| 研究生: |
陳立民 Chen, Li-Min |
|---|---|
| 論文名稱: |
奈米微晶二氧化鋯作為閘極氧化層之製備與特性研究 Fabrication and characterization of nanocrystalline ZrO2 gate oxide |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 二氧化鋯 、閘極氧化層 |
| 外文關鍵詞: | gate oxide, ZrO2 |
| 相關次數: | 點閱:46 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用反應性磁控濺鍍系統沈積ZrO2薄膜作為閘極氧化層之應用,並探討不同製程對ZrO2薄膜沈積在矽基材上時所生成的中介層的影響。本實驗第一部分探討在空白矽晶片上沈積ZrO2薄膜以及在空白矽晶片上預先濺鍍一層極薄的Zr金屬層來改善ZrO2與Si之間的的界面品質,並探討不同的後續熱處理氣氛(氧氣或氮氣)及溫度(300℃、500℃、700℃)對材料性質與電性的影響。第二部分則著重探討ZrO2薄膜沈積在以N2O及NH3低溫(450℃)電漿氮化矽基材之熱穩定性與其對電性的影響。
本實驗使用低掠角X光繞射儀對薄膜的結構及結晶性進行分析。使用拉塞福背向散射分析儀做薄膜組成成份與密度之分析。使用X光光電子能譜分析儀對不同製程的ZrO2薄膜進行表面化學鍵結分析、定量分析與縱深分析;此外,並使用歐傑電子能譜儀進行縱深分析。薄膜的厚度使用穿透式電子顯微鏡鑑定,並觀察其微結構。光學性質方面,使用橢圓偏光儀量測薄膜的折射率,並可同時模擬薄膜與中介層的厚度及組成成份。電性方面,使用Picoampere meter(HP 4140B)量測I-V曲線,而C-V曲線則使用LCR meter(HP 4284)進行量測。
實驗結果第一部分顯示,初鍍的ZrO2薄膜為非晶質薄膜,但含有介穩的正方晶相奈米微晶,而且氧的含量大於計量比。退火後,晶粒些微成長、薄膜緻密化、中介層比例增加,且漏電流亦下降。預先濺鍍一層金屬Zr可降低中介層所佔厚度比例,但其捕獲電荷較多,顯示其氧化層品質較差,並導致其漏電流亦較大。兩種製程的薄膜內的有效電荷均為正電荷,隨著退火溫度上升而增加,但在700℃退火後則減少。
實驗結果第二部分顯示,電漿氮化矽基材所產生的SiOxNy。可有效阻止中介層的成長,尤其以使用NH3的效果較佳,但效果並不如預先濺鍍一層金屬層明顯。ZrO2薄膜沈積在電漿氮化矽基材的捕獲電荷較沈積在空白矽晶片上少,漏電流亦較低;700℃退火後,以N2O電漿氮化的有效電荷較少,而以NH3電漿氮化的捕獲電荷較少、熱穩定性較佳。
ZrO2 thin films are deposited by reactive magnetron sputtering as application for gate oxide, and the effects of various processing methods upon the interfacial layer formed when ZrO2 deposited on Si is investigated. In the first section of the experiment, the interfacial characters of ZrO2 thin films deposited on bare silicon substrate and on silicon substrate with an pre-sputtered ultrathin Zr metal layer is studied; furthermore, the effects of various post- annealing atmosphere (O2 or N2) and temperatures (300℃, 500℃, 700℃) upon the material and electrical characteristics is also examined. The second section of the experiment focuses on the thermal stability and electrical properties of ZrO2 thin films deposited on low temperature (450℃) N2O and NH3 plasma nitrided Si surface.
Glancing incident angle x-ray diffraction (GIAXRD) is utilized to analyze the structure and crystallinity of the thin films. The composition and density of the thin films are determined by Rutherford ackscattering spectrometry (RBS). X-ray photoelectron spectroscopy (XPS) is applied for surface bonding analysis, quantification and depth profile. Elemental depth profiles are also measured by Auger electron spectroscopy (AES). The thickness of the thin films is determined by transmission electron microscope (TEM), and the microstructure is also characterized. For optical properties, ellipsometer is used not only to measure the refractive index of the thin films, but also to simulate the thickness and composition of the ZrO2 layer and the interfacial layer. For electrical properties, HP 4140B is used to measure the I-V curves, and the C-V curves are obtained by HP 4284.
The results of the first section reveal that as-deposited ZrO2 thin films are amorphous, but contain metastable tetragonal nanocrystallites, and the oxygen content is beyond its stoichiometric value. After annealing, the growth of the nanocrystallites is insignificant, the films densify, the thickness ratio of the interfacial layer increase, and the leakage current decrease. Pre-sputtering an ultrathin Zr metal layer decreases the thickness ratio of the interfacial layer, but the larger amount of oxide traps indicates the inferior quality of the oxide, and results in larger leakage currents. The thin films of the two different processing methods exhibit positive effective charges, which increase with increasing post-annealing temperature, but decrease after annealing at 700℃.
Based on the results of the second section, silicon oxynitride grown by plasma nitridation reduces the growth of the interfacial layer effectively, particularly using NH3, but is not as effective as pre-sputtering an ultrathin Zr layer. ZrO2 thin films deposited on plasma nitrided silicon substrate exhibit fewer oxide traps, and the leakage current is thus lower. After annealing in 700℃, the N2O nitrided system possesses fewer positive effective charges, while the NH3 nitrided system possesses fewer oxide traps and better thermal stability.
1. International technology roadmap for semiconductor 2003
2. R. M. Wallace and G. D. Wilk, Exploring the limits of gate dielectric
scaling, Semicond. Int. June, 153 (2001)
3. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt,
and G. Timp, The electronic structure at the atomic scale of ultrathin gate
oxides, Nature 399, 758 (1999)
4. S. Tang, R. M. Wallace, A. Seabaugh, D. King-Smith, Evaluating the
minimum thickness of gate oxide on silicon using first-prnciples method,
Appl. Sur. Sci. 135, 137 (1998)
5. J. D. Plummer and P. B. Griffin, Material and process limits in silicon
VLSI technology, Proc. IEEE 89, 240 (2001)
6. C. P. Liu, Y. Ma, H. Luftman, and S. J. Hillenius, Preventing boron
peretration through 25-Å gate oxides with nitrogen implant in the Si
substrates, IEEE Electron Dev. Lett. 18, 212 (1997)
7. A. Martin, P. Osullivan, and A. Mathewson, Dielectric reliability
measurement methods: A review, Microelectron. Reliab. 38, 37 (1998)
8. G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-k gate dielectrics:
Current status and materials properties considerations, J. Appl. Phys. 89,
5243 (2001)
9. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York,
1981)
10. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor)
Physics and Technology (Wiley, New York, 1982)
11. J. Robertson, Electronic structure amd band offsets of high-dielectri - constant gate oxides, MRS Bulletin Mar, 217 (2002)
12. P. W. Peacock and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides, J. Appl. Phys. 92, 4712 (2002)
13. J. Robertson and C. W. Chen, Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite, Appl. Phys. Lett. 74, 1168 (1999)
14. D. G. Schlom and J. H. Haeni, A thermodynamic approach to selecting alternative gate dielectrics, MRS Bulletin Mar, 198 (2002)
15. R. Beyers, Thermodynamic considerations in refractory metal-silicon-oxygen systems, J. Appl. Phys. 56, 147 (1984)
16. K. J. Hubbard and D. G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996)
17. S. Q. Wang and J. W. Mayer, Reactions of Zr thin films with SiO2 substrates, J. Appl. Phys. 64, 4711 (1988)
18. L. Manchanda, M. L. Green, R. B. van Dover, M. D. Morris, A. Kerber, Y. Hu, J.-P. Han, P. J. Silverman, T. W. Sorsch, G. Weber, V. Donnelly, K. Pelhos, F. Klemens, N. A. Ciampa, A. Kornblit, Y. O. Kim, J. E. Bower, D. Barr, E. Ferry, D. Jacobson, J. Eng, B. Busch and H. Schulte, Si-Doped aluminates for high temperature metal gate CMOS: Zr-Al-SI-O, A novel gate dielectric for low power applications, IEDM Tech. Dig. 02_02 (2000)
19. J. Zhu and Z.G. Liu, Structure and dielectric properties of Zr-Al-O thin films prepared by pulsed laser deposition, Microelectron. Eng., 66, 849 (2003)
20. A. Kumar, D. Rajdev, and D. L. Douglass, Effect of oxide defect structure on the electrical properties of ZrO2, J. Am. Chem. Soc. 55, 439 (1972)
21. R. B. van Dover, Amorphous lanthanide-doped TiOx dielectric films, Appl. Phys. Lett. 74, 3041 (1999)
22. K. Kukli, M. Ritala and M. Leskelä, Properties of (Nb1-xTax)2O5 solid solutions and (Nb1-xTax)2O5-ZrO2 nanolaminates grown by atomic layer epitaxy, Nanostructured Materials, 8, 785 (1997)
23. K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw and C. D. Overgaard, Field effect transistors with SrTiO3 gate dielectric on Si, Appl. Phys. Lett. 76, 1324 (2000)
24. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, High-resolution depth profiling in ultrathin Al2O3 films on Si, Appl. Phys. Lett. 76, 176 (2000)
25. M. Copel, M. A. Gribelyuk and E. P. Gusev, Structure and stability of
ultrathin zirconium oxide layers on Si (001), Appl. Phys. Lett. 76, 436 (2000)
26. M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation, Appl. Phys. Lett. 77, 1885 (2000)
27. R. C. Smith, N. Hoilien, C. J. Taylor, T. Z. Ma, S. A. Campbell, J. T. Roberts, M. Copel, D. A. Buchanan, M. Gribelyuk, and W. L. Gladfelter, Low temperature chemical vapor deposition of ZrO2 on Si (100) using anhydrous zirconium(IV) nitrate, J. Electrochem. Soc. 147, 3472 (2000)
28. S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng, and W. K. Choi, Crystalline zirconia oxide on silicon as alternative gate dielectrics, Appl. Phys. Lett. 78, 1604 (2001)
29. T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, Binary Alloy Phase Diagrams, (American Society for metals, Ohio (1987)
30. Y. M. Chiang, D. Birnie III, W. D. Kingery, Physical Ceramics: Principles for ceramic science and engineering, (Wiley, New York, 1997)
31. D. J. Green, R. H. J. Hannink, M. V. Swain, Transformation toughnening of ceramics, (CRC Press, Florida, 1989)
32. K. J. Hubbard and D. G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996)
33. I. Barin and O. Knacke, Thermochemical properties of inorganic substances, (Spring-Verlag, Berlin, 1977)
34. A. Kumar, D. Rajdev, Effect of oxide defect structure on the electrical properties of ZrO2, J. Am. Cer. Soc. 55, 439 (1972)
35. W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon and J. C. Lee, Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application, Appl. Phys. Lett. 77, 3269 (2000)
36. W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee and J. C. Lee, MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si, Tech. Dig. IEDM 99-145
37. M. Houssa, V. V. Afanas’ev, A. Stesmans and M. M. Heyns, Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation, Appl. Phys. Lett. 77, 1885 (2000)
38. J. M. Howard, V. Craciun, C. Essary and R. K. Singh, Interfacial layer formation during high-temperature annealing of ZrO2 thin films on Si, Appl. Phys. Lett. 81, 3431 (2002)
39. T. Yamaguchi, H. Satake, N. Fukushima and A. Toriumi, Study on Zr-silicate interfacial of ZrO2 metal-insulator-semiconductor structure, Appl. Phys. Lett. 80, 1987 (2002)
40. J. P. Chang and Y.-S. Lin, Dielectric property and conduction mechanism of ultrathin zirconium oxide films, Appl. Phys. Lett. 79, 3666 (2001)
41. S. Jeon and H. Hwang, Electrical characteristics of ultrathin ZrO2 prepared by wet oxidation of an ultrathin Zr-metal layer, J. Vac. Sci. Technol. B 20, 400 (2002)
42. S. Ramanathan, D. A. Muller, G. D. Wilk, C. M. Park and P. C. Mclntyre, Effect of oxygen stoichiometry on the electrical properties of zirconia gate dielectrics, Appl. Phys. Lett. 79, 3311 (2001)
43. K. Yamamoto, S. Hayashi, M. Kubota and M. Niwa, Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics, Appl. Phys. Lett. 81, 2053 (2002)
44. B. Y. Tsui and H. W. Chang, Formation of interfacial layer during reactive sputtering of hafnium oxide, J. Appl. Phys. 93, 10119 (2003)
45. R. Nieh,,, R. Choi, S. Gopalan, K. Onishi, C. S. Kang, H.-J. Cho, S. Krishnan and J. C. Lee, Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics, Appl. Phys. Lett. 81, 1663 (2002)
46. H. Ishii , A. Nakajima and S. Yokoyama, Growth and electrical properties of atomic-layer deposited ZrO2/Si-nitride stack gate dielectrics, J. Appl. Phys. 95, 536 (2004)
47. P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee and J. G. Ekerdt, Electrical and spectroscopic comparision of HfO2/Si interfaces on nitrided and un-nitrided Si(100), J. Appl. Phys. 91, 4353 (2002)
48. B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Dev. ED-27, 606 (1980)
49. D. K. Schroder, Semiconductor material and device characterization 2nd edition, Wiley, New York (1998)
50. B. E. Deal, M. Sklar, A. S. Grove and E. H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon, J. Electrochem. Soc. 114, 266 (1967)
51. A. Goetzberger, E. Klausmann and M. J. Schulz, Interface states on semiconductor/insulator interface, CRC Crict. Rev. Solid State Sci., 6, 1-43 (1976)
52. G. Declerck, Characterization of surface states at the Si-SiO2 interface, in Nondestructive Evaluation of of Semiconductor Materials and Devices (J. N. Zemel, ed) Plenum Press, New York, 105-148 (1979)
53. J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, A physical model fro the hysteresis phenomenon of the ultrathin ZrO2 film, J. Appl. Phys.
92, 3936 (2002)
54. G. Greeuw, J. F. Verwey, The mobility of Na+, Li+ and K+ ions in thermal grown SiO2 films, J. Appl. Phys. 56, 2218 (1984)
55. Y. Shacham-Diamond, A. Dedhia, D. Hoffstetter and W. G. Oldham, Copper transport in thermally SiO2, J. Electrochem. Soc. 140, 2427 (1993)
56. L. M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes, Solid-State Electron. 5, 285 (1962)
57. D. M. Brown and P. V. Gray, Si-SiO2 fast interface state measurements, J. Electrochem. Soc. 115, 760 (1968)
58. C. N. Berglund, IEEE Trans. Electron Dev. ED-13, 701 (1966)
59. E. H. Nicollian and A. Goetzberger, The Si-SiO2 interface---Electrical properties as determined by the metal-insulator-silicon conductance technique, Bell Syst. Tech. J. 46, 1055-1133 (1967)
60. J. S. Burgler and P. G. A. Jespers, Charge pumping in MOS devices, IEEE Trans. Electron Dev. ED-16, 297 (1969)
61. P. A. Muls, G. J. Declerck and R. J. van Overstraeten, Characterization of the MOSFET operating in weak inversion, Adv. In Electron. and Electron Phys. 47, 197-266 (1078)
62. W. M. Warner, The work function difference of the MOS-system with aluminum field plates and polycrystalline silicon field plates, Solid State Electron. 17, 769 (1974)
63. M. Kuhn and D. J. Silversmith, Ionic contamination and transport of mobile ions in MOS structures, J. Electrochem. Soc. 118, 966 (1971)
64. T. M. Buck, F. G. Allen, J. V. Dalton and J. D. Struthers, Studies of sodium in SiO2 films by neutron activation and radiotracer techniques, J. Electrochem. Soc. 114, 862 (1967)
65. E. Yon, W. H. Ko and A. B. Kuper, Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis, IEEE Trans. Electron Dev. ED-13, 276 (1966)
66. B. Yurash and B. E. Deal, A method for determining sodium content of semiconductor processing materials, J. Electrochem. Soc. 115, 1191 (1968)
67. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed. Volume 1-Auger and X-ray Photoelectron Spetroscopy (Wiley, Chichester, 1990)
68. B.-O. Cho, J. P. Chang, J.-H. Min, S. H. Moon, Y. W. Kim, I. Levin, Material characteristics of electrically tunable zirconium oxide thin films, J. Appl. Phys. 93, 745 (2003)
69. K. Koski, J. Holsa and P. Juliet, Properties of zirconium oxide thin films deposited by pulse reactive magnetron sputtering, Surf. Coat. Technol. 120-121, 303 (1999)
70. B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd ed. (Prentice Hall, New Jersey, 2001)
71. E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous and M. A. Salim, Observation of oxygen enrichment in zirconium oxide films, J. Vac. Sci. Technol. A 11, 580 (1993)
72. R. Lide, CRC Handbook of chemistry and physics 84th ed. (CRC, Boca Raton, Fl, 2003)
73. S. Venkataraj, O. Kappertz, H. Weis, R. Srese, R. Jayavel and M. Wuttig, Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering, J. Appl. Phys. 92, 3599 (2002)
74. J. Emsley, The elements, (Clarendon Press, Oxford, 1989)
75. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain and R. C. King, Jr., Editor, (Physical Electronics Inc., Minnesota, 1995)
76. J. Zhu and Z. G. Liu, Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition, Appl. Phys. A 78, 741 (2004)
77. M. J. Guittet, J. P. Crocombette and M. Gautier-Soyer, Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects, Phy. Rev. B 63, 125117 (2001)
78. T. L. Barr, in Quantitative surface analysis of materials, edited by N. S. Mclntyre (American society for testing and materials, Philadelphia, 1978)
79. N. L. Zhang, Z. T. Song, Q. Wan, Q. W. Shen and C. L. Lin, Interfacial and microstructural properties of zirconium oxide thin films prepared directly on silicon, Appl. Sur. Sci. 202, 126 (2002)
80. D. A. Shirley, High resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972)
81. R. W. M. Kwok, XPXSPEAK 4.0, Department of Chemistry, The Chinese University of Hong Kong Shatin, Honk Kong, email: rmkwok@cuhk.edu.hk
82. H. De Witte, T. Conard, W. Vandervorst and R. Gijbels, Ion- bombardment artifact in TOF-SIMS analysis of ZrO2/SiO2/Si stacks, Appl. Sur. Sci. 203-204, 523 (2003)
83. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd. (Physical Electronics Division, Minnesota, 1978)
84. I. Jiménez and J. L. Sacedón, Influence of Si oxidation methods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: a synchrotron photoemission study, Surf. Sci. 482-485, 272 (2001)
85. G.-M. Rignanese and A. Pasquarello, Nitrogen bonding configurations at nitrided Si (001) surfaces and Si(001)-SiO2 interfaces: A first-principles study of core-level shifts, Phys. Rev. B 63, 075307 (2001)
86. H. T. Tang, W. N. Lennard, M. Zinke-Allmang, I. V. Mitchell, L. C. Feldman, M. L. Green, and D. Brasen, Nitrogen content of oxynitride films on Si (100), Appl. Phy. Let. 64, 3473 (1994)
87. A. Nakajima, T. Kidera, H. Ishii and S. Yokoyama, Atomic-layer deposition of ZrO2 with a Si nitride barrier layer, Appl. Phy. Let. 81, 2824 (2002)
88. L.-A. Ragnarsson and P. Lundgren, Electrical characterization of Pb centers in (100)Si–SiO2 structures: The influence of surface potential on passivation during post metallization anneal, J. Appl. Phys. 88, 938 (2000)
89. J.-G. Hwo, M.-J. Jer, W.-S. Wang, and Y.-K. Tu, Clockwise C-V hysteresis phenomena of metal-tantulum-oxide-silicon-onide-silicon (p) capacitors due to lekage current through tantalum oxide, J. Appl. Phys. 62, 4277 (1987)
90. M. Houssa, M. Naili, C. Zhao, H. Bender, M. M. Heyns and A. Stesmans, Effect of O2 post-deposition anneals on the properties of ultra-thin SiOx/ZrO2 gate dielectric stacks, Semicond. Sci. Tech. 16, 31 (2001)
91. Y.-S. Lai, K.-J. Chen, and J. S. Chen, Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plamsma nitridated Si substrates, J. Appl. Phys. 91, 6428 (2002)