| 研究生: |
林佳德 Lin, Chia-Te |
|---|---|
| 論文名稱: |
正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝 |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 奈米微粒 、電噴霧 、非均勻相核凝 |
| 外文關鍵詞: | nanoparticles, electrospray, heterogeneous nucleation |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
奈米微粒因為粒徑很小而可能顯現出與巨觀材料性質不同的效應。在大氣中因為天然及人為因素亦產生相當多的奈米微粒,成為大氣氣膠中重要成分。本研究以電噴霧法製備TiO2 以及甘露糖(D-Mannose)奈米微粒並以流動型雲霧室探討正丁醇蒸氣在帶電甘露糖奈米微粒(10~30nm)以及帶電或不帶電之TiO2奈米微粒(5~20nm)上所引起之非均勻相核凝機構。
在TiO2 與甘露糖奈米微粒所引起的非均勻相核凝方面,無論是帶電或不帶電的微粒,其粒徑越小,臨界過飽和度隨之增大,定性上與理論相符合。而帶單一正、負電荷之微粒臨界過飽和度大約相同,也就是說並沒有明顯的因微粒所帶之正負電荷極性不同而有不同的效應產生。有關電荷效應,在7~20nm之間的TiO2微粒,不帶電微粒所需之臨界過飽和度小於帶電微粒的值,定性上和理論不符合。
對帶有單一正或負電荷之甘露糖微粒而言,在實驗之粒徑範圍內,其電荷的差別對所需之臨界過飽和度並未造成明顯的差異。
ABSTRACT
Nanoparticles may have a property different from the bulk due to such a small size. Recently, the subjects concerning their production, properties and applications have received extensively attention and been intensively investigated. On the other hand, nanoparticles are generated due to natural and anthropogenic activities, and become an important component of the atmospheric aerosols. In the study, an electrospray aerosol generator was used to generate organic/inorganic nanoparticles and the flow cloud chamber(FCC) was employed to examine the effects of particle size and charge on the critical supersaturation for the condensation of a supersaturated n-butanol vapor on organic/inorganic nanoparticles with a diameter from 5 to 30nm, each carrying a single positive or negative charge or no charge.
For the condensation of n-butanol vapor on TiO2 and D-Mannose. The results show that no matter the neutral or charged particles, the experimental Scr increases with decreasing particle size at a rate qualitatively in reasonable agreement with the theoretical prediction. The Scr of single-chaged positive and negative particles are almost the same. On the other hand there is not a charge effect on Scr. The Scr of neutral particles is greater than that of the charged particles for TiO2 particles with a diameter in the range of 7~20nm.
The condensation of supersaturated vapor on singly-positively-charged or singly-negatively-charged D-Mannose particles, with diameters of 10~30 nm is also examined. No obvious effect of a charge on Scr is observed.
參考文獻
1. Hinds, W.C.,“Aerosol Technology”, (Wiley, New York) (1982)
2. Zettlemoyer,A.C,“NUCLEATION”,Chap.4,p.151,Marcel Dekker,Inc.
3. Fletcher, N.H.,“The Physics of Rainclouds”, 1st Ed., Cambridge University Press, p.390 (1969)
4. Pruppacher, H.R. and Klett, J.D., “Microphysics of Clouds and Precipitation”, (Reidel, Holland), p.714 (1980)
5. Twomey, S.,Piepgrass, M. and Wolfe, T.L.,”An assessment of the impact of pollution on globo cloud albedo”, Tellus, 36B, p.356(1984).
6. Chen, Chin-Cheng and Tao, Chun-Ju,” Condensation of supersaturated water vapor on submicron particles of SiO2 and TiO2”, J. Chem. Phys., 112, 22, p.9967 (2000)
7. Chen, Da-Ren, Pui,David, Y.H.,Kaufman,Stanley L., “Electrospraying of conducting liquids for monodisperse aerosol generation in 4nm to 1.8μmdiameter range”, J. Aerosol Sci, 26, 6, p.963(1995)
8. Chen, C.H., Emond, M.H.J., Kelder, E.M.,Meester, B. and Schoonman, J., ”Electrostatic sol-spray deposition of nanostructured ceramic thin films”, J. Aerosol Sci. 30, 7, p.959(1999).
9. Danek, M.,Jensen, K.F.,Murray, C.B., Bawendi, M.G., “Synthesis of luminescent thin film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe”, Chem. Mater., 8, p.173~180 (1996)
10. Koropchak, John A., Sadain, Salma,Yang, Xiaohui,Magnusson, Lars-Erik,Heybroek, Mari,Anisimov, Micheal,Kaufman, Stanley L., ”Nanoparticle Detection Technology for Chemical Analysis” Analytical Chemistry, 71, 11, p. 386A-394A(1999)
11. Kaufman, Stanley L., “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular” Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999)
12. Tang, K. and Gomez, A., “Generation by electrospray of monodisperse water droplets from targeted drug delivery by inhalation”, J. Aerosol Sci. 25, 6 , p.1237,(1994).
13. Zeleny, J., “On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points”, Proc. Camb. Philos. Soc., 18, p.71~83(1915)
14. Cloupeau, M. and Prunet-Foch, B., “ Electrostatic spraying of liquids in cone-jet mode”, Journal of Electrostatics, 22, p.135(1989)
15. Fletcher, N.H., “Size Effect in Heterogeneous Nucleation”, J. Chem. Phys., 29, p.572-576 (1958)
16. He, F.,Hopke, P.K., “Experimental study of ion-induced nucleation by Radon-decay”, J. Chem. Phys., 99, p.9972(1993).
17. LaMer, V.K.,Gruen, R., “A direct test of Kelvin’s equation connecting vapour pressure and radius of curvature”, Trans. Faraday Soc. 48, p.410 (1952)
18. Twomey, S., “Experiment test of the Volmer Theory of heterogeneous nucleation”, J. Chem. Phys. 30, p.941 (1959).
19. Koutsky, J.A.,Walton, A.G. and Baer, E., “Heterogeneous nucleation of water vapor on high and low energy surfaces”, Surface Sci. 3, p.165 (1965).
20. Jameson, G.J.,Del Cerro, M.C.G., “Theory for the equilibrium contact angle between a gas, a liquid and a solid”, J. Chem. Soc. Faraday Trans. I, 72, p.883(1976).
21. Saville, G., “Computer simulation of the lique-solid-vapor contact angle”, J. Chem. Soc. Faraday Trans. II, 73, p.1122 (1977).
22. White, L.R., “Deviation from Young’s Equation”, J. Chem. Soc. Faraday Trans. I, 73, p.390 (1977)
23. Juisto, J.E.,Kocmond, W.C., “Condensation on nonhygroscopic particles”, J. Rech. Atmos., 3, p.19 (1968)
24. Liu, B.Y.H.,Pui, D.Y.H.,Mckenzie, R.L.,Agarwal, J.K.,Pohl, F.G., Preining, O.,Reischl, G.,Szymansky, W. and Wagner, P.E., “Measurement of Kelvin equivalent size distribution of well-defined aerosols with particles diameter>13nm”, Aerosol Sci. Technol., 3, p.107(1984).
25. Porstendorfer, J.,Scheibel, H.G.,Pohl, F.G.,Preining, O.,Reischl, G. and Wagner, P.E., ”Heterogeneous nucleation of water vapor on monodispersed Ag and NaCl particles with diameter between 6 and 18nm”, Aerosol Sci. Technol., 4, p.65(1985)
26. Katz, J.L. and Mirabel, P., “Calculation of supersaturation profiles in thermal diffusion cloud-chamber”, J. Atmos. Phys., 32, p.646(1975)
27. Kaufman, Stanley L., “Analysis of biomolecules using electrospray and nanoparticles methods:the gas phase electrophoretic mobility molecular analyzer (gemma)”, J. Aerosol Sci. 29, 5-6, p.537(1998).
28. Kaufman, Stanley L., “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular” Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999).
29. Wilson, C.T.R., ”Condesation of water vapour in the presence of dust-free air and other gases”, Phil. Trans. A, 189, p.265(1897)
30. Thomson, J.J., “Conduction of Electricity Through Gases”, 3rd. Ed.,Vol.1 (Cambridge University, Cambridge),pp.320-333.(1928)
31. Loeb, L.B.,Kip, A.F. and Einarsson, A.W., “On the nature of ion sign preference in C. T. R. Wilson cloud chamber condensation experiments”, J. Chem. Phys., 6, 265(1938)
32. Katz, J.L.,Fisk, J.A. and Chakarov, V.M., “Condensation of a supersaturated vapor IX. Nucleation of ions”, J. Chem. Phys, 101, p.2309(1994)).
33. Mäkelä, J.M.,Riihela, M.,Ukkonen, A.,Jokinen, V. and Keskunen, J., “Comparison of mobility equivalent diameter with Kelvin-Thomson ion mobility data”, J. Chem. Phys., 105, p.1562(1996)
34. Seto, T.,Okuyama, K.,de Juan, L. and Fernadez De La Mora, J., “Condensation of supersaturation vapors on monovalent and divalent ions of varying sizes”, J. Chem. Phys, 107, p.1576(1997).
35. Russell, K.C., “Nucleation on gaseous ions”, J. Chem. Phys., 50, p.1809(1969)
36. Rusanov, A.I. and Kuni, F.M., ”Reformulation of the thermodynamic theory of nucleation of charged particles”, J. Colloid Interface Sci., 100, p.264(1984).
37. Stachorska, D., “Cindensation of supersaturated vapor”, J. Chem. Phys.,42, p.1887(1965).
38. Briant, C.L. and Burton, J.J., “Molecular dynamics study of the effects of ions on water microclusters”, J. Chem. Phys., 64, p.2888(1946).
39. Suck, S.H., “Change of free energy in heteromolecular nucleation:Electrostatic energy contribution”, J. Chem. Phys., 75, p5090(1981)
40. Kusaka, I.,Wang, Z.G. and Seinfeld, J.H., ”Ion-induced nucleation:A density function approach”, J. Chem. Phys., 102, p913(1995)
41. Kusaka, I.,Wang, Z.G. and Seinfeld, J.H., ”Ion-induced nucleationⅡ:Polarizable multipolar molecules”, J. Chem. Phys., 103, p.8993(1995)
42. Rabeony, H and Mirabel, P., ”Vapor nucleation on ions”, J. Chim. Phys. Physicochim. Biol., 83, p.219(1986)
43. Chan, L.Y. and Mohnen, V.A.,J. Atmos. Sci., 37, p.233(1980)
44. 郭明升,”水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文,國立成功大學化工系(1995).
45. 蔡宜哲,”水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文,國立成功大學化工系(1996)
46. 黃崇銓,”正丁醇蒸汽在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系(1996).
47. 許豪仁,”正丁醇蒸汽在味精與乳糖次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系(1997).
48. 陶君儒,”水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸次微米微粒上之非均勻相核凝現象”,博士論文,國立成功大學化工系(2000)
49. 鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2002)
50. Jaworek, A. and Krupa, A., “Classification of the modes of EHD spraying”, J. Aerosol Sci., Vol.30, No7, pp873~893, (1999)
51. Kebarle, P. and Tang, L., Anal. Chem., 65, p.972A(1993)
52. Smyth, W. Franklin, “The use of electrospray mass spectrometry in the detection and determination of molecules of biological significance”, Trends in analytical chemistry, V.18, n.5, p.335(1999).
53. Hartman, R.P.A.,Brunner, D.J.,Camelot, D.M.A.,Marijinissen, J.C.M. and Scarlett, B. , “Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet” , J. Aerosol Sci. , Vol.30 , No.7, pp. 823~849 , (1999)
54. Hartman, R.P.A.,Brunner, D.J.,Camelot, D.M.A.,Marijnissen, J.C.M. and Scarlett, B., “Jet break-up in electrohydrodynamic atomization in the con-jet mode”, J. Aerosol Sci., 31, 1, p.65-95(2000)
55. Kaufman, Stanley L., “Analysis of biomolecules using electrospray and nanoparticles methods:the gas phase electrophoretic mobility molecular analyzer (gemma)”, J. Aerosol Sci. 29, 5-6, p.537(1998)
56. Burayev, T.K. and Vereshchagin, I.P., Fluid Mech., Sov. Res., 1, 56(1972)
57. Smith, D.P.H., IEEE Trans. Ind.Appl., 1A-22, 527(1986)
58. Taylor, G. and Van Dyke, M.D., Proc. R. Soc. London, Ser. A, 313, 453(1969)
59. Zeleny, J., “Instability of electrified surfaces”, Phys. Rev., 10, 1-16(1917)
60. Vonnegut, B. and Neubauer, R.L., J. Colloid Sci., 7,616(1952).
61. Cloupeau, M. and Prunet-Foch, B., “Electrohydrodynamic spraying functioning modes:a critical review”, J. Aerosol Sci., 25, 6, p.1021(1994)
62. Lazaridis, M., “The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation”, J. Colloid Interface Sci. 155, p.386(1993)
63. Volmer, M., ”Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden (1939)
64. Chen, C.C.,Hung, L.C. and Hsu, H.K., “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid Interface Sci., 157, p465 (1993)
65. Katz, J.L. and Ostermier, B.J., “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., 47, p.478(1967)
66. Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
67. Model 3012, Aerosol Neutralizer Instruction Manual, TSI Inc.(2002)
68. Katz, J.L., ”Condensation of a Supersaturated Vapor, I. “The homogeneous nucleation of the n-Alkanes”, J. Chem. Phys., 52, p.4733(1970)
69. Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002).
70. Model 3936 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI Inc.(2002).
71. 陳彥宇,”電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系(2003)
72. 蔡聞庭, “正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose 次微米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(1998)