| 研究生: |
涂耀中 Tu, Yao-Chung |
|---|---|
| 論文名稱: |
水庫淤泥經水熱法合成沸石礦物 Zeolite from water reservoir sediment via hydrothermal process |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 水庫淤泥 、氫氧化鈉 、沸石 、水熱反應 |
| 外文關鍵詞: | reservoir sediments, sodium hydroxide, zeolite, hydrothermal |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣水庫經過颱風及地震的影響,造成水庫嚴重淤積,清除淤泥為當務之急,而將淤泥資源再生為可用材料亦延伸成為重要之議題,鑒於淤泥成分含有氧化矽(SiO2)與氧化鋁(Al2O3)以及它類鹼金、鹼土元素,如鈉、鉀、鈣及鎂,在水熱環境下可和鹼液反應形成沸石礦物。本實驗採用的鹼液為氫氧化鈉,探討鹼液濃度(1M、5M和9M)、水熱溫度(90。C、120。C和150。C)、淤泥之煆燒溫度(0。C、750。C和950。C)和水熱時間(6hr、12hr和24hr)對沸石合成的影響。結果顯示水庫淤泥在水熱溫度150。C和鹼液濃度為9M會出現兩相沸石共存,其中原料是未煆燒水庫淤泥其合成相Sodalite和Faujacite;750。C煆燒水庫淤泥合成相為Sodalite和Faujacite;950。C煆燒淤泥合成相為Sodalite和Cancrinite。以水庫淤泥合成出的沸石礦物以Faujacite、Sodalite和Cancrinite為主,其中以煆燒溫度950。C、水熱溫度150。C、氫氧化鈉溶液濃度9M和合成時間24小時之條件合成出的Cancrinite,因經過二次溶解析出,晶粒顆粒細緻有良好的氨氮吸附性質,對NH4+離子吸附能力可達21.23 cmol/kg。
Reservoir sediments in Taiwan precipitate heavily due to earthquake and typhoon, dredging and recycling of reservoir sediment have become a serious issue. Since sediment contains SiO2 、Al2O3 and other flux ions , it can react with alkali solution to form zeolites. Sodium hydroxide is used as alkali solution. The alkali concentration(1M、5M and 9M)、the reaction temperature(90。C、120。C and 150。C)、the calcination temperature of sediment (0。C、750。C and 950。C) and hydrothermal time(6hr、12hr and 24hr) were discussed on the effect of zoelite synthesis experiment.
The results showed that two zeolites coexist in the condition of the reaction temperature of 150。C and the alkali concentration of 9M. Two kinds of zeolites are sodalite and faujacite made from uncalcined sediment or calcined sediment at 750。C, sodalite and cancrinite made from calcined sediment at 950。C.The zeolites sybthesized from reservoir sediment are sodalite、faujacite and cancrinte.The cancrintie synthesized in the condition of the reaction temperature of 150。C、the alkali concentration of 9M、the calcination temperature of 950。C and hydrothermal time at 24hr has fine particles and well absorption of NH4+ due to second dissolving and precipitating, the cancrinite absorbs 21.23 cmol/kg NH4+.
1. X. Querol, N. Moreno, J.C. Umana, A. Alastuey, E. Hernandez, A. Lopez-Soler, F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geo. 50 (2002) 413-23.
2. M.W. Ackley, S.U. Rege, H. Saxena, Application of natural zeolites in the purification and separation of gase, Micropor. Mesopor. Mat. 61 (2003) 25–4
3. 曾旭志,芳香烴及環狀烴在 Silicalite-1 沸石中恆溫吸附之分子模擬,碩士論文,國立成功大學(2007)
4. 王倉修,直鏈狀烷類在 MFI 型沸石中恆溫吸附之分子模擬,碩士論文,國立成功大學 (2005)
5. M. Meftah, W.Oueslati, A. Ben Haj Amara, Synthesis process of zeolite P using a poorly crystallized kaolinite, Physics Procedia 2 (2009) 1081–6.
6. 劉玉梅,向陽絹雲母礦中葉蠟石水熱合成方沸石之研究,碩士論文,國立成功大學 (2006)
7. 吳雅雯,水熱合成方沸石之離子吸附研究,碩士論文,國立成功大學 (2009)
8. 國際沸石協會資料庫,http://www.iza-structure.org/
9. 劉錡樺,水處理污泥轉換活性碳-沸石複合吸附材料之研究,碩士論文,國立中央大學 (2010)
10. N. Murayama, H. Yamamoto, J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alki hydrothermal reaction, Int. J. Miner. Process. 64 (2002) 1-17.
11. M. Inada, Y. Eguchi, N. Enomoto, J. Hojo, Synthesis of zeolite coal fly ashes with differentsilica-alumina composition, Fuel 84 (2005) 299-304.
12. Y.S. Yoo, K.H. Cheon, J.I. Lee1, B.S. Kim, W.S. Shin, G.T. Seo, Zeolite Synthesis Using Sewage Sludge by Molten-salt Method, Mater. Sci. Forum, Vol. 569 (2008) pp 329-332
13. T Wajima, M.Hagaa, K. Kuzawa, H. Ishimoto, O. Tamadaa, K. Ito, T. Nishiyama, R. T. Downsd, J. F. Rakovan, Zeolite synthesis from paper sludge ash at low temperature (90 ◦C) with addition of diatomite, J Hazard Mater. B132 (2006) 244–252
14. Q. Liu, A. Navrotsky, Synthesis of nitrate sodalite: an in situ scanning calorimetric study, Geochim.Cosmochim. Acta 71 (2007) 2072-8.
15. 彭國文,“利用台灣東部安山岩製造沸石粉體之研究”,碩士論文,國立成功大學礦冶及材料工程系 (1990)
16. J. Temuujin, K. Okada, K. J.D. MacKenzie, Zeolite formation by hydrothermal treatment of waste solution from selectively leached kaolinite, Mater. Lett. 52 (2002) 91-5.
17. A. Chaisena, K. Rangsriwatananon, Synthesis of sodium zeolites from nature and modified diatomite, Mater. Lett. 59 (2005) 1474-9.
18. M. Alkan, C. Hopa, Z. Yilmaz, H. Güler, The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite, Micropor. Mesopor. Mater. 86 (2005)176-84.
19. C.A. Ríos, C.D. Williams, M.A. Fullen, Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods, Clay Sci. 42 (2009) 446-54.
20. A.G. San Cristóbal, R. Castelló, M.A. Martín Luengo, C. Vizcayno, Zeolites prepared from calcined and mechanically modified kaolins: A comparative study, Clay Sci. 49 (2010) 239-46.
21. I. D.R. Mackinnon, G. J. Millar, W. Stolz, Low temperature synthesis of zeolite N from kaolinites and montmorillonites, Clay Sci. 48 (2010) 622-30.
22. M. Kazemimoghadam, T. Mohammadi, Preparation of nano pore hydroxysodalite zeolite membranes using of kaolin clay and chemical sources, Desalination (2011) accepted.
23. M. Mezni, A. Hamzaoui, N. Hamdi, E. Srasra, Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods, Clay Sci. 52 (2011) 209-18.
24. Y. Du, S. Shi, H. Dai, Water-bathing synthesis of high-surface-area zeolite P from diatomite, Particuology 9 (2011) 174-8.
25. K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog Cryst Growth Ch, 53 (2007) 117-166
26. 金相灿, 賀凱,戶少勇, 胡小貞,李勝男, 4種填充料對氨氮的吸附效果, J Lake Sci, 2008,20(6):755-760