| 研究生: |
詹智鈞 Chan, Chih-Jun |
|---|---|
| 論文名稱: |
非軸對稱光學系統的第一階至第四階波前像差研究 Exploration of the First- to Fourth-Order Wavefront Aberrations for Non-axially Symmetrical Optical Systems |
| 指導教授: |
林昌進
Lin, Psang-Dain |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 波前像差 、賽德像差 、泰勒級數展開 、軸對稱光學系統 、非軸對稱光學系統 |
| 外文關鍵詞: | Wavefront aberration, Seidel aberration, Taylor series expansion, Axis-symmetrical optical system, Non-axially symmetrical optical system |
| 相關次數: | 點閱:265 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討非軸對稱光學系統之波前像差,但是因為光程是複合函數而非多項式,無法計算所需的第一階至第四階波前像差。因此,首先必須將光程函數對光源的五個獨立變數進行泰勒級數展開至四階,再根據展開的結果整理出第一階至第四階波前像差。本論文將分別對物在有限距離與在無窮遠兩種情況討論。
為了驗證本研究的正確性,本論文選用庫克三分離物鏡(Cooke triplet)作為範例,並以Fortran程式計算軸對稱與非軸對稱兩種情況的像差。軸對稱的波前像差會與Zemax比較,但是Zemax沒有提供非軸對稱波前像差,所以本研究的非軸對稱系統波前像差僅能與範例對照。驗證的結果證明本論文的正確性。最後將探討其他變數對於總波前像差的影響,結果顯示若物在有限距離,能調整變數數值使總波前像差為零。
The purpose of this study is to investigate the wavefront aberrations of non-axially symmetrical optical systems, but since the optical path length is a composite function rather than a polynomial, the required first to fourth-order wavefront aberrations cannot be calculated. Therefore, the five independent variables of the light source must be firstly expanded to the fourth-order by Taylor series, and then the first to fourth-order wavefront aberrations must be sorted out according to the expansion results. In this study, we will discuss the two cases of the object point at a finite distance and at an infinite distance.
In order to verify the correctness of this study, this study selects Cooke triplet as an example, and uses Fortran program to calculate the aberrations in both axis-symmetrical and non-axially symmetrical cases. Axis-symmetrical wavefront aberrations will be compared to Zemax, and wavefront aberrations of non-axially symmetrical systems will be compared to the example. The verification results prove the correctness of this study. Finally, the influence of other variables on the total wavefront aberration will be discussed. The results show that if the object is at a limited distance, the total wavefront aberration can be made zero by adjusting the variable value.
[1] W. J. Smith, Modern Optical Engineering (3rd ed., McGraw-Hill, 2000).
[2] Psang Dain Lin, "Seidel primary ray aberration coefficients for objects placed at finite and infinite distances," Optics Express, Vol. 28, Issue 9, pp. 12740-12754 (2020).
[3] K. K. Sharma, Optics: Principles and Applications (Elsevier, 2006).
[4] Psang Dain Lin, "Alternative method for computing primary wavefront aberrations
using Taylor series expansion of optical path length," Optik, Vol. 248, 168140 (2021).
[5] Fenggang Xu, Wei Huang, Jun Liu & Wubin Pang, "Design of lenses with curved Petzval image surfaces," Journal of Modern Optics, Vol. 63, Issue 21, pp. 2211-2219 (2016).
[6] ZEMAX Optical Design Program User's Manual, Radiant ZEMAX LLC (2011).
[7] Arthur S Leonard, The Yolo reflector (Oakland, Calif. : OPTICA, 1965).
[8] R. Barry Johnson, "A historical perspective on understanding optical aberrations," Proc. SPIE 10263, Lens Design: A Critical Review, 1026303 (1992).
[9] René Descartes, Discours de la méthode (1637).
[10] Isaac Newton, Opticks (1704).
[11] C. F. Gauss, Dioptrische Untersuchungen (1841).
[12] Joseph Petzval, Bericht über die Ergebnisse einiger dioptrischer Untersuchungen (Hartleben, 1843).
[13] Ludwig Seidel, "Zur Dioptrik. Ueber die Entwicklung der Glieder 3ter Ordnung, welche den Weg eines ausserhalb der Ebene der Axe gelegenen Lichtstrahles durch ein System brechender Medien bestimmen, von Herrn Dr. L. Seidel," Astronomische Nachrichten, Vol. 43, Issue 19, pp. 289-304 (1856).
[14] F. Zernike, "Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode," Physica, Vol. 1, Issues 7-12, pp. 689-704 (1934).
[15] H. A. Buchdahl, Optical Aberration Coefficients (Dover, 1968).
[16] A. E. Conrady, "Decentered Lens-Systems," Monthly Notices of the Royal Astronomical Society, Vol. 79, Issue 5, pp. 384-390 (1919).
[17] L. Ivan Epstein, "The Aberrations of Slightly Decentered Optical Systems," Journal of the Optical Society of America, Vol. 39, Issue 10, pp. 847-853 (1949).
[18] Yukichi Ukita, Jumpei Tsujiuchi, "On the Wave Aberrations of the Decentred Lens System with the Finite Aperture," Journal of the Physical Society of Japan, Vol. 9, Issue 4, pp. 602-604 (1954).
[19] Paul L. Ruben, "Aberrations Arising from Decentrations and Tilts," Journal of the Optical Society of America, Vol. 54, Issue 1, pp. 45-52 (1964).
[20] Richard Alfred Buchroeder, "Tilted component optical systems," Ph.D. dissertation, University of Arizona (1976).
[21] Kevin Paul Thompson, "Aberration fields in tilted and decentered optical systems," Ph.D. dissertation, University of Arizona (1980).
[22] Milton Laikin, Lens Design (4th ed., CRC Press, 2007).
[23] J. L. Rayces, "Exact Relation between Wave Aberration and Ray Aberration," Optica Acta: International Journal of Optics, Vol. 11, Issue 2, pp. 85-88 (1964).