簡易檢索 / 詳目顯示

研究生: 郭咨妤
Kuo, Tzu-Yu
論文名稱: 銅銦鎵二硒太陽能電池緩衝層材料之研究
Studies of Buffer Layer Materials for CuIn1-xGaxSe2 Solar Cells
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 薄膜太陽能電池含鈉玻璃基板銅銦鎵二硒硒化法溴水蝕刻緩衝層
外文關鍵詞: Thin film solar cells, Soda-Lime Glass (SLG), CuIn1-xGaxSe2 (CIGS), selenization, Br2 etch, buffer layer
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文以銅─銦─鎵先驅物濺鍍於鉬背電極之含鈉玻璃基板,經由高溫硒化形成銅銦鎵二硒之吸收層薄膜,然後比較吸收層薄膜經過不同蝕刻製程、不同緩衝層以及不同絕緣層厚度之薄膜太陽能電池元件的光電轉換效率差異。
      於實驗中發現溴水蝕刻製程的時間、緩衝層材料的差異(硫化鎘與硫化鋅)、緩衝層厚度(硫化鎘)與絕緣層製程差異(氧化鋅)皆會影響元件的開路電壓、短路電流、填充係數、串並聯電阻以及其效率。本實驗透過掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDX)、X光繞射分析儀(XRD)、薄膜測厚儀(Alpha Step)對薄膜進行表面形貌、組成成分、晶體結構與薄膜厚度進行分析,最後以太陽光模擬與I-V量測系統量測其光電轉換效率並比較不同製程之元件差異。
      最後以溴水蝕刻60秒,並且以100nm硫化鎘為緩衝層、70nm氧化鋅絕緣層之製程成功做出本實驗最高光電轉換效率的薄膜太陽能電池,由電流電壓特性曲線顯示其具顯著之二極體特性,量測數據:Voc=270mV、Jsc=36.45mA/cm2、F.F.=38.59%、η=3.8%。

    In this dissertation, we used sputtered Copper-Indium-Gallium metallic precursors on Mo-coated Soda-Lime Glass (SLG) substrates. High temperature selenization process was used to form CuIn1-xGaxSe2 (CIGS) absorber layer. The conversion efficiencies of the CIGS solar cells are compared with various etching process for absorber films, different buffer layers, and various thickness of insulator layers.
    The study found that the etch time (Br2) on CIGS film, different buffer layer (CdS/ ZnS) materials, and the thickness insulator layer (i-ZnO) have significant influence on Voc, Jsc, fill factor, series and shunt resistance, and cell efficiency. The study used scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Alpha Step to analysis the morphology, element composition, crystalline phase/orientation, and thickness of the film. At last, solar simulator and I-V measurements were used to measure the conversion efficient of the devices with different processes, buffer layers, and thickness of films.
    The highest efficiency of CIGS solar cell was fabricated with 60s Br2 etch, 100 nm CdS buffer layer and 70nm i-ZnO layer. The I-V measurement results indicate this device has remarkable diode chacteristics with following photovoltaic parameters : Voc=270mV、Jsc=36.45mA/cm2、F.F.=38.59%、η=3.8%。

    目錄 中文摘要---------------------------------------------------------------------------------I Abstract----------------------------------------------------------------------------------II 致謝-------------------------------------------------------------------------------------III 目錄-------------------------------------------------------------------------------------IV 表目錄---------------------------------------------------------------------------------VII 圖目錄----------------------------------------------------------------------------------IX 第一章 緒論----------------------------------------------------------------------------1 1-1 太陽能電池發展背景-------------------------------------------------------1 1-2 太陽能電池簡介-------------------------------------------------------------3 1-3 研究動機----------------------------------------------------------------------6 第二章 原理----------------------------------------------------------------------------7 2-1 太陽能電池的原理------------------------------------------------------------7 2-1-1太陽光譜--------------------------------------------------------------------7 2-1-2 太陽能電池的原理-------------------------------------------------------9 2-1-3太陽能電池等效電路----------------------------------------------------11 2-2 銅銦鎵二硒(CuIn1-xGaxSe2)薄膜太陽能電池---------------------------16 2-2-1 銅銦鎵二硒薄膜材料特性與晶體結構------------------------------16 2-2-2銅銦鎵二硒(CuIn1-xGaxSe2)常見的鍍製方式------------------------21 2-2-3銅銦鎵二硒(CuIn1-xGaxSe2)薄膜太陽能電池元件架構------------25 2-3 銅銦鎵二硒(CuIn1-xGaxSe2)薄膜太陽能電池緩衝層種類----------32 2-3-1 硫化鎘(CdS)之緩衝層-------------------------------------------------32 2-3-2 硫化鋅(ZnS)之緩衝層-------------------------------------------------37 2-3-3 其他材料之緩衝層-----------------------------------------------------38 第三章 實驗--------------------------------------------------------------------------40 3-1 實驗所需材料及實驗設備--------------------------------------------------40 3-1-1 實驗材料、藥品及實驗設備規格-------------------------------------40 3-1-2 濺鍍系統------------------------------------------------------------------42 3-1-3 高溫爐管系統------------------------------------------------------------43 3-2 實驗流程-----------------------------------------------------------------------46 3-2-1 含鈉玻璃(Soda-Lime Glass, SLG)基板清洗------------------------48 3-2-2 濺鍍鉬(Mo)背電極-----------------------------------------------------48 3-2-3 分層濺鍍銅─銦─鎵(Cu-In-Ga)先驅層---------------------------49 3-2-4 硒化(Selenization)製程------------------------------------------------49 3-2-5 緩衝層材料與界面製程-----------------------------------------------51 3-2-6 濺鍍純質氧化鋅(i-ZnO)絕緣層--------------------------------------61 3-2-7 濺鍍氧化鋅掺鋁(ZnO:Al, AZO)透明導電層----------------------62 3-2-8 濺鍍銀(Ag)前電極------------------------------------------------------62 3-3 分析所使用之儀器原理介紹-----------------------------------------------64 3-3-1掃描式電子顯微鏡(SEM)-----------------------------------------------64 3-3-2 能量分散式光譜儀(EDX)---------------------------------------------66 3-3-3 X光繞射儀(XRD)-------------------------------------------------------68 3-3-4 薄膜測厚儀(Alpha Step)-----------------------------------------------69 3-3-5 太陽光模擬器------------------------------------------------------------71 第四章 結果與討論-----------------------------------------------------------------72 4-1 先驅物比例不同對薄膜表面粗糙度之影響與分析--------------------72 4-2 吸收層表面SEM與EDX薄膜成分分析--------------------------------75 4-2-1 溴水(Br2)蝕刻製程對薄膜表面與成分之探討---------------------75 4-2-2 元件使用不同溴水蝕刻時間及其效率量測------------------------80 4-3 不同緩衝層(Buffer Layer)與界面及其元件轉換效率量測-----------83 4-3-1 元件使用CdS與ZnS緩衝層之效率量測--------------------------83 4-3-2 ZnS製程差異對薄膜表面及特性的探討與元件效率量測-------85 4-3-3 元件使用不同CdS厚度及其效率量測------------------------------91 4-4 抗反射層(i-ZnO)厚度差異對元件轉換效率的影響-------------------94 4-5 製程穩定性對元件轉換效率的影響--------------------------------------97 第五章 結論-------------------------------------------------------------------------100 第六章 參考文獻-------------------------------------------------------------------102 表目錄 表2-1 不同比例的銅銦鎵二硒(CuIn1-xGaxSe2)之導電特性------------------20 表2-2為六種製程方式的優缺點比較--------------------------------------------25 表2-3 各種沉積方法對各種材料所得到的效率-------------------------------39 表3-1 實驗所用之儀器設備-------------------------------------------------------40 表3-2 實驗所使用之材料與藥品-------------------------------------------------42 表4-1 先驅物(Precursor)比例不同經硒化之後之分析-----------------------73 表4-2 試片1經溴水蝕刻不同時間之EDX成份分析-----------------------76 表4-3 試片2經溴水蝕刻不同時間之EDX成份分析------------------------78 表4-4 溴水蝕刻時間不同之元件結構與效率量測。左方經溴水蝕刻30秒;右方60秒---------------------------------------------------------------------82 表4-5 CdS與ZnS元件比較。兩者皆使用水浴法鍍膜,左方是成長CdS緩衝層;右方是成長ZnS緩衝層----------------------------------------84 表4-6 不同製程之ZnS緩衝層元件。左方是水浴法製備ZnS緩衝層;右方是ZnO在高溫箱型爐以400℃, 20min硫化製備ZnS緩衝層之元件--------------------------------------------------------------------------87 表4-7 不同硫化溫度之ZnS緩衝層元件。左方是ZnO在高溫箱型爐以500℃持溫15分鐘;右方是ZnO在高溫箱型爐以400℃持溫20分鐘硫化製備ZnS緩衝層之元件----------------------------------------------90 表4-8 不同厚度之CdS元件比較。左方使用50nm CdS緩衝層;右方使用100nm CdS緩衝層----------------------------------------------------------93 表4-9 使用不同厚度之ZnO絕緣層元件。左方使用70nm ZnO,右方則是100nm ZnO-------------------------------------------------------------------95 表4-10 不同試片於相同時間、經過相同製程與其光電轉換效率-----------98 圖目錄 圖1-1 太陽能電池的分類-----------------------------------------------------------3 圖1-2 2012太陽能電池材料比重--------------------------------------------------4 圖1-3 目前各種太陽能電池轉換效率--------------------------------------------4 圖2-1 太陽輻射光譜-----------------------------------------------------------------8 圖2-2 太陽光譜圖-------------------------------------------------------------------10 圖2-3 p-n接面太陽能電池結構圖------------------------------------------------11 圖2-4 太陽能電池未照光(a)與照光(b)能帶圖---------------------------------12 圖2-5 理想(a)與非理想(b) p-n接面太陽能電池等效電路------------------14 圖2-6 太陽能電池未照光與照光電流電壓曲線-------------------------------15 圖2-7 (a)二六族化合物之閃鋅礦結構(b)一三六族化合物知黃銅礦結構 --------------------------------------------------------------------------------18 圖2-8 銅(Cu)─銦(In)─硒(Se)三元相圖----------------------------------------18 圖2-9 Cu2Se與In2Se3之擬二元相圖--------------------------------------------19 圖2-10 各種半導體在不同波長下之光吸收係數-----------------------------21 圖2-11 四元蒸鍍設備與蒸鍍源溫度--------------------------------------------22 圖2-12 三階段共蒸鍍製程--------------------------------------------------------22 圖2-13 濺鍍機示意圖--------------------------------------------------------------23 圖2-14銅銦鎵二硒(CuIn1-xGaxSe2)薄膜太陽能電池元件架構--------------26 圖2-15 (112) CuIn1-xGaxSe2與(002)Cd1-xZnxS之晶格間距-------------------28 圖2-16 i-ZnO可阻止漏電流路徑-------------------------------------------------30 圖2-17 CdS之(a)閃鋅礦立方結構與(b)纖鋅礦六角結構(黃色為Cd原子,藍色為S原子)--------------------------------------------------------------33 圖2-18 CBD-CdS的晶粒大小(a)較PVD-CdS的晶粒大小(b)的SEM圖,可觀察到CBD-CdS的晶粒大小較PVD-CdS小---------------------34 圖2-19(a) CuIn1-xGaxSe2/CBD-CdS/ZnO與(b) CuIn1-xGaxSe2/CBD-CdS/ZnO之電子繞射圖。CBD-CdS成長較一致,而PVD-CdS則否-----------35 圖2-20 (a) CuIn1-xGaxSe2/CBD-CdS接面(b) CuIn1-xGaxSe2/CBD-CdS接面之能量散射X射線光譜儀---------------------------------------------------36 圖2-21 (112) CuIn1-xGaxSe2與(002)Cd1-xZnxS之晶格間距--------------------38 圖3-1 濺鍍系統----------------------------------------------------------------------43 圖3-2 兩區段高溫爐管系統-------------------------------------------------------44 圖3-3 單區段高溫爐管系統-------------------------------------------------------44 圖3-4 高溫箱型真空爐-------------------------------------------------------------45 圖3-5 實驗流程圖-------------------------------------------------------------------46 圖3-6 上圖3-5之四部份製程之流程圖-----------------------------------------47 圖3-7 元件膜厚與結構-------------------------------------------------------------47 圖3-8 兩區域加熱爐管示意圖(藍色為加熱線圈)-----------------------------51 圖3-9 異質成核(Heterogeneous) CdS薄膜示意圖-----------------------------53 圖3-10 同質成核(Homogeneous) CdS薄膜示意圖----------------------------53 圖3-11 水浴法裝置-----------------------------------------------------------------53 圖3-12 兩區域加熱爐管示意圖(藍色為加熱線圈)---------------------------57 圖3-13 異質成核(Heterogeneous)ZnS薄膜示意圖---------------------------58 圖3-14 同質成核(Homogeneous) ZnS薄膜示意圖---------------------------58 圖3-15 水浴法裝置-----------------------------------------------------------------59 圖3-16 硫化盒-----------------------------------------------------------------------61 圖3-17 Hitachi S4100 SEM系統--------------------------------------------------64 圖3-18 掃描式電子顯微鏡基本構造--------------------------------------------66 圖3-19 實驗之EDX系統----------------------------------------------------------67 圖3-20 實驗所用之XRD系統----------------------------------------------------68 圖3-21 薄膜測厚儀-----------------------------------------------------------------70 圖3-22 Alpha-Step原理示意圖----------------------------------------------------70 圖3-23 太陽光模擬器I-V量測系統---------------------------------------------71 圖4-1溴水蝕刻時間不同之表面分析(試片1)----------------------------------76 圖4-2溴水蝕刻時間不同之表面分析(試片2) --------------------------------77 圖4-3溴水蝕刻前後薄膜厚度變化(試片1)-------------------------------------79 圖4-4溴水蝕刻前後薄膜厚度變化(試片2)-------------------------------------80 圖4-5 ZnO/SLG試片以400℃持溫20分鐘之XRD圖-----------------------88 圖4-6 ZnO/SLG試片以500℃持溫15分鐘之XRD圖-----------------------91

    1. Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta,” Solar Cell Efficiency Tables (Version 37)”, Prog. Photovolt : Res. Appl., 19, 84-92, 2011
    2. 蔡進譯,”超高效率太陽電池─從愛因斯坦的光電效應談起”,物理雙月刊,二十七卷五期,2005年
    3. Philip Jackson, Dimitrios Harikos, Erwin Lotter, Stefan Paetel, Roland Wurez, Richard Menner, Wiltraud Wischmann and Michael, Powalla, “New World Record Efficiency for Cu(In, Ga)Se2 Thin-Film Solar Cells Beyond 20%”, Prog. Photovolt, Res. Appl., 2011
    4. 楊德仁,太陽能電池材料,五南圖書出版公司,台灣,p.6,2008年
    5. Martin A. Green著,曹邵陽,狄大衛,李秀文等譯,太陽電池工作原理、技術與系統應用(Solar Cells Operating Principles, Technology and System Applications),五南圖書出版公司,台灣,p.004-006, 2009年
    6. 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,台灣,p.5,2008年
    7. Martin A. Green著,曹邵陽,狄大衛,李秀文等譯,太陽電池工作原理、技術與系統應用(Solar Cells Operating Principles, Technology and System Applications),五南圖書出版公司,台灣,p.002, 2009年
    8. 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,台灣,p.5-6,2008年
    9. S. M. Sze, “Semiconductor Devices Physics and Technology”, 2nd ed, John Wiley & Sons, New York, Chap. 9.5.2, 2002
    10. 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,台灣,p. 10,2008年
    11. 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,台灣,p. 7,2008年
    12. Harry A. Atwater, Albert Polman, “Plasmonics for Improved Photovoltaic Devices”, Nature Material, Vol. 9, p.205-213, 2010
    13. W. Eisele, E.P. Jacobs, I. Eisele, G. Dorda, “Electron Mobility in Si-Mosfets with an Additional Implanted Channel”, Institute of Electrical anf Electronics Engineers, p. 692-695, 2000
    14. C. Guillen, J. Herrero, ”Optical Properties of Electrochemically Deposited CuInSe2 Thin Film”, Solar Energy Materials, 23, p. 31, 1991
    15. K. Zweibel, B. Jackson and A. Hermann, “Comment on Critical Materials Assessment Program”, Solar Cells, 16, p. 631, 1986
    16. R. W. Birkmire, L.C.Dinetta, P.G. Lasswell. J. D. Meakin and J. E. Phillips, “High Efficiency CuInSe2 Based Heterojunction Solar Cells : Fabrication and Result”, Solar Cells, 16, p.419, 1986
    17. A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons, New York, p.574, 2003
    18. 蔡文進,電化學沉積二硒化銅銦鎵薄膜研究,吳鳳技術學院光機電暨材料研究所,2008年
    19. A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons, New York, p.572, 2003
    20. R. W. Birkmire, E. Eser, “Polycrystalline Thin Film Solar Cells : Present Status and Future Potential”, Annual Review of Materials Science, 27 ,p. 627, 1997
    21. R. N. Bhattacharya, J. Keane, “Electrodeposition and Characterization of CuInSe2 for Applications in Thin Film Solar Cells”, Electrochem. Soc, 143, p. 854, 1984
    22. R. N. Bhattacharya, P. J. Sebastian, X. Mathew, “Preparation and Characterization of Copper Indium Deselnide Films by Electroless Deposition”, Solar Energy Materials and Solae Cells, 63, p. 316, 2000
    23. P. J. Sebastian, E. Calixto, A. Fernandez, “ Electro/Electroless Deposition and Characterization of Cu-In Precursors for CIS films”, Crystal Growth, 169, p. 287, 1996
    24. R. Friedfeld, R. P. Raffaelle, J. G. Mantovani, “Electrodeposition of CuInxGa1-xSe2 Thin Films”, Solar Energy Materials & Solar Cells, 58, p.375-385, 1999
    25. J.W. Chu, D. Honeman, “Degradation Processes in Polycrystalline Copper Indium Diselenide Photoelecrochemical Cells”, Solar Cells, 31, p. 197, 1991
    26. J. L. Shay, B. Tell, H. M. Kasper, L. M. Schiavone, Phys. Rev. 7, p. 4485, 1973
    27. M. A. Contreras, B. Egaas, K. Ramanathan, J. Kiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt. : Res. Appl., 7, 311, 1999
    28. B. Pamplin, R. S. Feigelson, “ Spray pyrolysis of CuInSe2 and Related Ternary Semiconducting Compounds”, Thin Solid Films, 60, p. 144, 1979
    29. S. P. Grindle, A. H. Clark, S. R. Serej, J. Mcneily, L. L. Mcneily, ”The Effects of Doping Sb on Properties of CuInSe2 Thin-Film Solar Cells”, Applied Physics, 51, p. 10, 1980
    30. N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, ”Growth of Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering”, Solar Cells, 16, p. 155-164
    31. R. K. Pandey, S. N. Sahu and S. Chandra, “Handbook of Semiductor Electrodeposition”, Marcel Dekker, New York, 1996
    32. D. Pottier, G. Maurin, “Preparation of Polycrystalline Thin Films of CuInSe2 by Electrodeposition”, Appl. Electrochem., 19, p. 361, 1989
    33. D. Braunger, D. Hariskos, G. Bilger, U.Rau, H. W. Schock, ”Influence of Sodium on the Growth of Polycrystalline Cu(In, Ga)Se2 Thin Films”, Thin Solid Films, 361-362, p. 161-166, 2000
    34. M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H. W. Schock, “Influence of Substrates on the Electrical Properties of Cu(In, Ga)Se2 Thin Films”, 1st World Conference on Photovoltaic Energy Conversion, p. 156-159, 1994
    35. Xiaolong Zhu, Zhen Zhou, Yaoming Wanga, Lei Zhang, Aimin Li, Fuqiang Huang, “DeterminingfactorofMoSe2 formationinCu(In,Ga)Se2 solar Cells”, Solar Energy Materials & Solar Cells, 101, p. 57-61, 2012
    36. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, “Device Modeling and Simulation of the Performance of CuIn1-xGaxSe2 Solar Cells”, Solid-State Electronics, 48, p.73-79, 2004
    37. B. G. Streetman, S. K. Banerjee, “Solid State Electron Device, 6th Edition”, Pearson Prentice Hall, New Jersey, p. 158-208, 2006
    38. A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons, New York, p.587, 2003
    39. 蕭宏,半導體製程技術導論,台灣培生教育出版公司,台灣,p. 461,2007年
    40. F. Capasso, and G. Maragaritondo, “Heterojunction Band Iscontinuties : Physics and Device Application”, Elsevier Science, 1987
    41. R. N. Bhattacharya, K. Ramanathan, “Cu(In, Ga)Se2 Thin Film Solar Cells with Buffer Layer Alternative to CdS”, Solar Energy, 77, p. 679-683, 2004
    42. Michael Bass, “Handbook of Optics, Third Edition Volume II : Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry”, Vol. 2, 2nd Ed., McGraw Hill Professional, New York, 1994
    43. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, “Fabrication of Wide-Gap CuIn1-xGaxSe2 Thin Film Solar Cells : A Study on the Correlation of Cell Performance with Highly Resistive i-ZnO Layer Thickness”, Solar Energy Materials & Solar Cells, 87, p. 541, 2005
    44. R. Schaffler, H. W. Schock, “High Mobility ZnO:Al Thin Films Grown by Reactive DC Magnetron Sputtering”, Conference Record IEEE, 1993
    45. D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, A.N. Tiwari, “Structural and Chemical Investigations of CBD- and PVD-CdS Buffer Layers and Interfaces in Cu(In,Ga)Se2-based Thin Film Solar Cells”, Thin Solid Films, 480–481, p. 118– 123, 2005
    46. D. Hariskos, M. Ruckh, U. Rqhle, T. Walter, H.W. Schock, J.Hedstrfm, L. Stolt,“A Novel Cadmium Free Buffer Layer for Cu(In,Ga)Se2 Based Solar Cell”, Solar Energy Materials & Solar Cells, 41–42, p. 345, 1996
    47. D. Hariskos, S. Spiering and M. Powalla,“Buffer Layers in Cu(In,Ga)Se2 Solar Cells and Modules”, Thin Solid Films, 480-481, pp.99-109, 2005
    48. M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites,“ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo Solar Cell With 18.6% Efficiency”, Proceedings 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan, p. 570, 2003
    49. C. Platzer-Bjfrkman, J. Kessler, L. Stolt,“ Atomic Layer Deposition of Zn(O,S) Buffer Layers for High Efficiency Cu(In,Ga)Se2 Solar Cells”, Proceedings 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan, p. 461, 2003
    50. H.-J. Muffler, M. Baer, C.-H. Fischer, R. Gay, F. Karg, M.C. Lux-Steiner, Proceedings 28th IEEE Photovoltaic Specialist Conference, Anchorage, Alaska, USA, p. 610, 2000
    51. A. Romeo, R. Gysel, S. Buzzi, D. Abou-Ras, D.L. B7tzner, D.Rudmann, H. Zogg, A.N. Tiwari, Proceedings 14th Photovoltaic Science and Engineering Conference (PVSEC-14), Bangkok, Thailand, p. 705, 2004
    52. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot,” High-Efficiency Copper Indium Gallium Diselenide (CIGS) Solar Cells With Indium Sulfide Buffer Layers Deposited by Atomic Layer Chemical Vapor Deposition (ALCVD)”, Prog. Photovolt. Res. Appl. 11, p. 437, 2003
    53. A. Strohm, L. Eisenmann, R.K. Gebhardt, A. Harding, T. Schlftzer, D. Abou-Ras, H.W. Schock,“ZnO/InxSy/Cu(In,Ga)Se2 Solar Cells Fabricated by Coherent Heterojunction Formation”, Thin Solid Films, 480-481, p. 162-167, 2005
    54. D. Hariskos, R. Menner, S. Spiering, A. Eicke, M. Powalla, K. Ellmer, M. Oertel, B. Dimmler, Proceedings 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004
    55. A. Ennaoui, S. Siebentritt, M.Ch. Lux-Steiner, W. Riedl, F. Karg,“ High-Efficiency Cd-Free CIGSS Thin-Film Solar Cells With Solution Grown Zinc Compound Buffer Layers”, Solar Energy Materials & Solar Cells, 67, p. 31, 2001
    56. M. Munzel, C. Deibel, V. Dyakonov, J. Parisi, W. Riedl, F. Karg, “Electrical Characterization of Defects in Cu(In,Ga)Se2 Solar Cells Containing a ZnSe or a CdS Buffer Layer”, Thin Solid Films, 387, p. 231, 2001
    57. Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, M. Konagai, Jpn. J.,“ Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers”, Apply Physics, 34, p. 5949, 1995
    58. T. Negami, T. Aoyagi, T. Satoh, S. Shimakawa, S. Hayashi, Y. Hashimoto, “Cd Free CIGS Solar Cells Fabricated by Dry Processes”, Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, p. 656, 2002
    59. R. Mikami, H. Miyazaki, T. Abe, A. Yamada, M. Konagai, “Chemical Bath Deposited (CBD)-ZnO Buffer Layer for CIGS Solar Cells”, Proceedings 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan, p. 519, 2003
    60. M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-Film Solar Cells”, Prog. Photovolt. Res. Appl., 7, 311, 1999
    61. K. Ramanathan, F.S. Hasoon, S. Smith, A. Mascarenhas, H. Al-Thani, J. Alleman, H.S. Ullal, J. Keane, P.K. Johnson, J.R. Sites, “Properties of Cd and Zn Partial Electrolyte Treated CIGS Solar Cells: Preprint”, Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, p. 523, 2002
    62. S. Chaisitsak, A. Yamada, M. Konagai,“Japanese Journal of Applied Physics”, 41, pp. 507, 2002
    63. L.C. Olsen, P. Eschbach, S. Kundu, D.J. Gaspar, , “Role of Buffer Layers in CIS-Based Solar Cells”, Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, p. 652, 2002
    64. M. Ba¨r, Ch.-H. Fischer, H.-J. Muffler, B. Leupolt, Th.P. Niesen, F. Karg, M.Ch. Lux-Steiner, Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, p. 636, 2002
    65. D. Hariskos, R. Herberholz, M. Ruckh, U. Rqhle, R. Schaffler, H.W. Schock, Proceedings 13th European Photovoltaic Solar Energy Conference, Nice, France, p. 1995, 1995
    66. 蕭宏,半導體製程技術導論,台灣培生教育出版公司,台灣,p. 461-462,2007年
    67. B. Canava, J.F. Guillemoles, J. Vigneron, D. Lincot, A. Etcheberry, “Chemical Elaboration of Well Defined Cu(In,Ga)Se2 Surfaces After Aqueous Oxidation Etching”, Journal of Physics and Chemistry of Solids, 64, p. 1791-1796, 2003
    68. B. Canavaa, I. Gerarda, J.F. Guillemoles, D. Lincot, A. Etcheberry, “Cadmium Sulfide/Indium Phosphide As A Model System For Understanding Indium Related Chemical Reactivity At CIGS/CdS Interface: XPS and Ex Situ Luminescence Investigations”, Thin Solid Films, 480-481, p. 230-235, 2005
    69. M. Bouttemy, P. Tran-Van, I. Gerard, T. Hildebrandt, A. Causier, J.L. Pelouard, G. Dagher, Z. Jehl, N. Naghavi, G. Voorwinden, B. Dimmler, M. Powalla, J.F. Guillemoles, D. Lincot, A. Etcheberry, “Thinning of CIGS Solar Cells: Part I: Chemical Processing in Acidic Bromine Solutions”, Thin Solid Films, 519, p. 7207-7211, 2011
    70. Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, B. Dimmler, W. Wischmann, M. Powalla, J.F. Guillemoles, D. Lincot, “Thinning of CIGS Solar Cells: Part II: Cell Characterizations”, Thin Solid Films, 519, p. 7212-7215, 2011
    71. Darga, D. Mencaraglia, Z. Djebbour, A. Migan Dubois, J.F. Guillemoles, J.P. Connolly, O. Roussel, D. Lincot, B. Canava, A. Etcheberry, “Two Step Wet Surface Treatment Influence on the Electronic Properties of Cu(In,Ga)Se2 Solar Cells”, Thin Solid Films, 517, p. 2550-2553, 2009
    72. 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
    73. Naglaa Fathy, R. K., Massaya Ichimura, “ Preparation of ZnS Thin Films by the Pulse Electrochemical Deposition”, Materials Science and Engineering, 107, p. 271-276, 2004
    74. M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A. Gamboa, R. N. Noufi, “Cu(In,Ga)Se2-Based Photovoltaic Structure by Electrodeposition and Processing”, Solar Energy Materials and Solar Cells, 55, p. 23-29, 1998
    75. 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料學會,台灣,p. 169,1996年

    下載圖示 校內:2018-08-21公開
    校外:2018-08-21公開
    QR CODE