簡易檢索 / 詳目顯示

研究生: 陳昶達
Chen, Chang-Da
論文名稱: 三維列印建構用於手部關節置換手術訓練之人造手
Artificial Hand for Joint Replacement Surgical Training: 3D Printing Approach
指導教授: 張志涵
Chang, Chih-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 快速成型手術訓練灌注成型
外文關鍵詞: Rapid prototyping, Surgical training, Inject molding
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全人工腕掌關節置換手術是骨科常見的重要手術之一。臨床顯示,醫師往往憑藉自身的經驗以及技術的累積進行手術,而實習醫師因缺乏大量手術訓練因而造成技術不成熟,如何使缺乏手術經驗之醫師在手術過程中提升手術品質與降低病患風險是非常重要的。故本研究利用電腦輔助設計與逆向工程的方法,建構手術訓練用之仿真手模型,使醫師在進行手術訓練時能夠更加精確的模擬出手術觸感與術前評估規劃,進而提升醫師臨床技術與手術成功率。
    本研究為了做出手部複雜幾何之模型,特別引用3D列印技術以及矽膠灌注成型技術製作符合手術訓練之仿真手。製造過程首先使用電腦斷層掃描(CT)取得到骨骼和皮膚輪廓影像,再利用CAD軟體結合CT影像設計出仿真手之模具、骨頭以及其對位板,並以3D列印技術製作出上述CAD模型,再將對位板精準對位在骨頭以及模具上,校正骨頭與模具之相對位置。本研究為了符合臨床需求,利用乳膠材料黏著在兩骨間的關節上當作關節囊,最後以矽膠灌注成型之技術,將矽膠灌入已有骨頭之定位模具以當其皮膚並將骨頭完全包覆在內,最終完成仿真手。
    在完成仿真手之後,還需將其仿真手進行電腦斷層掃描並與原骨骼之CT影像做骨頭位置比對以驗證仿真手是否與真實CT影像相符,並請具有臨床經驗之醫師親自操刀測試。為了符合手術訓練之成本,本研究還針對不同類型與價格的3D列印機所製作之模型,以相同製作仿真手過程進行模型重製並將兩種列印方式進行探討與研究。

    Total Carpometacarpal (CMC) joint replacement is one of several efficacious orthopedic surgical treatments by which to restore functions of finger joints. Surgeons have depended on their clinical experience and on technology when performing such operations. However, it is important to enhance surgical quality and decrease the surgical risk for interns. Therefore, this study uses computer-aided design (CAD) and reverse engineering to construct a model of an artificial hand. The surgical training can accurately simulate a pre-estimation of surgery and surgical touch to promote the clinical skill and the surgical success rate of surgeons.
    For geometrical accuracy of the hand and model accuracy, this study uses 3D printing technology and injection molding technology to fabricate an artificial hand. This artificial hand can replicate the features of an actual hand during surgical training. The manufacturing process involves the use of computer tomography to obtain images of bones and skin. Then, the molds of the artificial hand, the bones and plate are designed using CAD software. The above models are fabricated with 3D printing technology. The completed plate is orientated on the mold and the bones. The relative position of the bones and molds is then adjusted. The latex material can adhere to the bones of a joint as a joint capsule in order to meet clinical requirements. Finally, silicone molding technology is used to pour the silicone into the molds. When the silicone is fully solidified, the artificial hand is completed.
    After the artificial hand is completed, computer tomography is used to scan the artificial hand. The position of the bones in the original CT image is compared with the position of bones in the prosthetic CT image. Then, the artificial hand is dissected by a surgeon who has clinical experience. In order to meet the cost of surgical training, this study is aimed at models that are fabricated according to different types and prices of 3D printers. Two types of 3D printing are investigated that the reproduction of models in the same procedure of fabricating artificial hand.

    Keywords: Rapid prototyping, Surgical training, Injection molding

    中文摘要 I Abstract II 誌謝 IV CONTENTS V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1-1 Background 1 1-1-1 Carpometacarpal joint 1 1-1-2 Total CMC Joint replacement training 3 1-2 Rapid Prototyping 7 1-2-1 Principle of Rapid Prototyping 7 1-2-2 Types of Rapid Prototyping 7 1-2-3 3D Printing System Objet Connex 350 8 1-3 Literature Reviews 11 1-3-1 Surgical Training by 3D Printing 11 1-3-2 Application of RP for Artificial Hand 11 1-4 Motivation and Purpose 14 Chapter2 Materials and methods 15 2-1 The Research Process 15 2-2 Construction of 3D Hand Model 17 2-2-1 Image Acquisition 17 2-2-2 Segmentation of Hand Image 17 2-2-3 3D Modeling 18 2-2-4 Design of the Mold and Bone Position 19 2-2-5 3D printing – Model 22 2-3 Post Process for 3D printing 23 2-4 Injection molding 24 Chapter3 Results 28 3-1 Fabricating Molds Using Objet Connex 350-One Finger 28 3-1-1 Manufacturing Process for Artificial Hand Using Objet Connex 350 28 3-1-2 Verification of Orientated Bone 30 3-2 Fabricating Molds Using Mbot-CUBEⅡ-Three and Five Fingers 31 3-2-1 Manufacturing Process for Artificial Hand Using Mbot-CUBEⅡ 31 3-2-2 Verification of Orientated Bone –Three fingers 32 3-3 Dissection of the model by a surgeon 33 Chapter4 Discussion 34 4-1 Preprocess for Manufacture of Artificial Hand 34 4-2 Comparison of Objet Connex 350 to Mbot-CUBEⅡ 40 Chapter5 Conclusions 41 Reference 42

    1. Marieb, E.N. and J. Mallatt, Human Anatomy. 2001: Benjamin-Cummings Publishing Company.
    2. Hart, R.G., H.E. Kleinert, and K. Lyons, A modified thumb spica splint for thumb injuries in the ED. Am J Emerg Med, 2005. 23(6): p. 777-81.
    3. Goldring, M.B. and S.R. Goldring, Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci, 2010. 1192: p. 230-7.
    4. Fontana, L., et al., Osteoarthritis of the thumb carpometacarpal joint in women and occupational risk factors: a case-control study. J Hand Surg Am, 2007. 32(4): p. 459-65.
    5. Uchiyama, S., et al., Biomechanical analysis of the trapeziometacarpal joint after surface replacement arthroplasty. J Hand Surg Am, 1999. 24(3): p. 483-90.
    6. Eaton, R.G. and S.Z. Glickel, Trapeziometacarpal osteoarthritis. Staging as a rationale for treatment. Hand Clin, 1987. 3(4): p. 455-71.
    7. Badia, A. and S.N. Sambandam, Total joint arthroplasty in the treatment of advanced stages of thumb carpometacarpal joint osteoarthritis. J Hand Surg Am, 2006. 31(10): p. 1605-14.
    8. Bhat, M., T.R. Davis, and A. Bannerjee, Trapezial space height measurement after trapeziectomy: a comparison of the use of standard and stress radiographs. J Hand Surg Am, 2003. 28(3): p. 390-6.
    9. http://guketiku.blog.hexun.com.tw/7738205_d.html.
    10. Sun, J. and F.Q. Zhang, The application of rapid prototyping in prosthodontics. J Prosthodont, 2012. 21(8): p. 641-4.
    11. Hockaday, L.A., et al., Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 2012. 4(3): p. 035005.
    12. Peltola, S.M., et al., A review of rapid prototyping techniques for tissue engineering purposes. Ann Med, 2008. 40(4): p. 268-80.
    13. Brajlih, T.D.e.I.K.i.M.B.J.e., Optimizing scale factors of the PolyJet TM rapid prototyping procedure by genetic programming. Journal of achievements in materials and manufacturing engineering, 2006. 16(2006).
    14. Singh, R. and B. Singh, Experimental Investigations for Silicon Moulding Solution of Plastic Components. Materials Science Forum, 2011. 701: p. 9-13.
    15. Lambrecht, J.T., et al., Generation of three-dimensional prototype models based on cone beam computed tomography. Int J Comput Assist Radiol Surg, 2009. 4(2): p. 175-80.
    16. Elliott, A.M., et al., Inkjet Printing of Quantum Dots in Photopolymer for Use in Additive Manufacturing of Nanocomposites. Advanced Engineering Materials, 2013: p. n/a-n/a.
    17. Hieu, L.C., et al., Medical rapid prototyping applications and methods. Assembly Automation, 2005. 25(4): p. 284-292.
    18. Kim, M.S., et al., Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation, 2008. 117(18): p. 2388-94.
    19. Knox, K., et al., Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter Cardiovasc Interv, 2005. 65(1): p. 47-53.
    20. Cabibihan, J.J., Patient-specific prosthetic fingers by remote collaboration--a case study. PLoS One, 2011. 6(5): p. e19508.
    21. Kini, A.Y., et al., Comprehensive prosthetic rehabilitation of a patient with partial finger amputations using silicone biomaterial: A technical note. Prosthet Orthot Int, 2010. 34(4): p. 488-94.
    22. Rockwood, C.A., et al., Rockwood and Green's Fractures in Adults. 2010: Wolters Kluwer/Lippincott Williams & Wilkins.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE