| 研究生: |
許峻銘 Hsu, Chun-Ming |
|---|---|
| 論文名稱: |
血纖維蛋白溶酶原對於腫瘤轉移的影響 Effect of plasminogen on tumor metastasis |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 血纖維蛋白溶酶原 、腫瘤 、轉移 |
| 外文關鍵詞: | plasminogen, tumor, metastasis |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血纖維蛋白溶酶原(plasminogen, Plg) 屬於血纖維蛋白溶解系統(plasminogen activator (PA)/plasmin system, PAS)中的一員,經由尿激酶型血纖維蛋白溶解酶原活化因子(urokinase-type plasminogen activator, uPA)活化成血纖維蛋白溶酶 (plasmin, Plm)。Plm是負責溶解血塊的主要蛋白分解酵素,並且也在纖維蛋白溶解作用(fibriolysis)、細胞外基質(Extracellular matrix, ECM)的降解、細胞爬行(cell migration)、組織重塑(tissue remodeling)、傷口癒合 (wound healing)及血管新生 (angiogenesis)中扮演重要角色。在過去的文獻報導中指出,PAS在腫瘤的生成中扮演著重要的角色,例如:uPA在腫瘤生長中,促進血管新生作用,藉以促進腫瘤的生長。此外,血管靜止蛋白(angiostatin),會抑制血管的生成。將腫瘤細胞以皮下注射的方法植入Plg+/+、Plg-/-老鼠的皮下,發現在失去Plg的老鼠身上,其原位腫瘤的生長會比較小,這所影響到的可能與巨噬細胞在腫瘤組織的浸潤以及血管生長的型態有關;而在當時的研究中宣稱,Plg與腫瘤的侵入、轉移沒有顯著的關係。但是在其他研究中,一些PAS的成員扮演著抑制腫瘤生長的角色。Plm會使得 (Metalloproteinase, MMPs)的活化進而幫助腫瘤細胞的入侵與轉移,但相反的Plm所引起的纖維蛋白溶解作用 (fibrinolysis)也可能會使得轉移的細胞存活率下降。所以過去的研究證據顯示,PAS對於腫瘤生長與轉移中扮演著兩種不同且相反的角色。在我們的實驗中發現,以尾靜脈注射B16F10黑色素瘤細胞株的轉移模式中,發現Plg-/-的老鼠在肺部所形成的黑色素瘤數量較Plg+/+多且有明顯的差異。而Lewis lung carcinoma cells (LLC)以及B16F10黑色素瘤細胞,在Plg的處理下細胞型態有所改變,且在Boyden chamber以及穿越內皮細胞層的試驗下, LLC與B16F10的爬行會被Plg所抑制並且有濃度上的趨勢,且Plg在對細胞生長以及細胞週期的分析下並無顯著的影響。此外,在我們的實驗中發現Plg對於原位腫瘤的生長有促進的作用,跟先前文獻的結果相符合。並且,LLC與B16F10在經過Plg的處理後,短時間內可以看到細胞外信號調節激酶 (Extracellular signal-regulated kinases, ERK) 磷酸化表現量上升。藉此我們推測,Plg對於腫瘤在轉移上有抑制的作用但是對於在原位腫瘤的生長有幫助。
The conversion of plasminogen (Plg) to plasmin (Plm) is catalyzed by plasminogen activators. Plasmin is the major proteolytic enzyme accounting for degradation of extracellular matrix (ECM) and dissolution of blood clots. In addition, Plm-mediated proteolysis can facilitate cell migration and promote tissue remodeling events such as wound healing and angiogenesis. It has been demonstrated that the components of Plg activation system (PAS) enhance tumorigenesis; for example, urokinase Plg activator (uPA) modulates endothelial cell proliferation and increases tumor angiogenesis. On the other hand, some of PAS suppress tumorigenesis. Angiostatin is a fragment of Plg that inhibits tumor angiogenesis. Serine proteases, including Plm, play an important role in tumor growth and tumor metastasis through releasing matrix bound growth factors and activating matrix metalloproteinases (MMPs). However, Plm-mediated fibrinolysis might decrease metastatic cell survival. These evidences suggest that PAS are paradoxically contributed to tumorigenesis. In this study, we will investigate the effects of Plg on tumor metastasis using Plg-deficiency (Plg-/-) mice. Our data showed that the number of lung metastatic nodules of B16F10 melanoma cells in wild type mice (Plg+/+) were less than those in Plg-/- mice in the experimental model of metastasis. In order to understand the mechanism of Plg-mediated effects, we used Lewis lung carcinoma cells (LLC) and B16F10 melanoma cells model system to detect cell properties. The cell morphology of LLC and B16F10 melanoma cell changed in a dose-dependent manner after the treatment of Plg. After Plg treatment, the migration of LLC and B16F10 melanoma cells was suppressed using Boyden chamber assay and transendothelial cell migration assay. On the other hand, we found that subcutaneous infection of tumor cells into Plg-/- mice resulted in reduced rate of tumor growth.Plg treatment could induce extracellular signal-regulated kinases (ERK) phosphorylation in B16F10 and LLC in a short period. These results indicate that Plg may suppress tumor metastasis through reduced cell migration but support primary tumor growth.
1 Andreasen, P. A., Kjoller, L., Christensen, L. & Duffy, M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72, 1-22 (1997).
2 Andreasen, P. A., Egelund, R. & Petersen, H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57, 25-40 (2000).
3 Collen, D. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost 43, 77-89 (1980).
4 van Hinsbergh, V. W. Regulation of the synthesis and secretion of plasminogen activators by endothelial cells. Haemostasis 18, 307-327 (1988).
5 Castellino, F. J. & Ploplis, V. A. Structure and function of the plasminogen/plasmin system. Thrombosis and Haemostasis 93, 647-654 (2005).
6 McMahon, B. & Kwaan, H. C. The Plasminogen Activator System and Cancer. Pathophysiology of Haemostasis and Thrombosis 36, 184-194 (2007).
7 Saito, H., Hamilton, S. M., Tavill, A. S., Louis, L. & Ratnoff, O. D. Production and release of plasminogen by isolated perfused rat liver. Proc Natl Acad Sci U S A 77, 6837-6840 (1980).
8 Forsgren, M., Raden, B., Israelsson, M., Larsson, K. & Heden, L. O. Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213, 254-260 (1987).
9 Laursen, R. A. & Lee, H. M. Primary structure of human plasminogen. Evidence for gene duplication in the heavy chain and possible homology with fibrinogen. FEBS Lett 56, 70-72 (1975).
10 Thorsen, S., Clemmensen, I., Sottrup-Jensen, L. & Magnusson, S. Adsorption to fibrin of native fragments of known primary structure from human plasminogen. Biochim Biophys Acta 668, 377-387 (1981).
11 Violand, B. N. & Castellino, F. J. Mechanism of the urokinase-catalyzed activation of human plasminogen. J Biol Chem 251, 3906-3912 (1976).
12 Sehl, L. C. & Castellino, F. J. Thermodynamic properties of the binding of alpha-, omega-amino acids to the isolated kringle 4 region of human plasminogen as determined by high sensitivity titration calorimetry. J Biol Chem 265, 5482-5486 (1990).
13 Miles, L. A. et al. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30, 1682-1691 (1991).
14 Collen, D. & Verstraete, M. Molecular biology of human plasminogen. II. Metabolism in physiological and some pathological conditions in man. Thromb Diath Haemorrh 34, 403-408 (1975).
15 Kwaan, H. C. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev 11, 291-311 (1992).
16 Danø, K. et al. Plasminogen activation and cancer. Thrombosis and Haemostasis 93, 676-681 (2005).
17 Vassalli, J. D., Sappino, A. P. & Belin, D. The plasminogen activator/plasmin system. J Clin Invest 88, 1067-1072 (1991).
18 Strassburger, W. et al. Adaptation of plasminogen activator sequences to known protease structures. FEBS Lett 157, 219-223 (1983).
19 Kwaan, H. C. The biologic role of components of the plasminogen-plasmin system. Prog Cardiovasc Dis 34, 309-316 (1992).
20 Mazzieri, R. et al. Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 16, 2319-2332 (1997).
21 de Bart, A. C., Quax, P. H., Lowik, C. W. & Verheijen, J. H. Regulation of plasminogen activation, matrix metalloproteinases and urokinase-type plasminogen activator-mediated extracellular matrix degradation in human osteosarcoma cell line MG63 by interleukin-1 alpha. J Bone Miner Res 10, 1374-1384 (1995).
22 Deryugina, E. I. & Quigley, J. P. Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews 25, 9-34 (2006).
23 Bu, G., Warshawsky, I. & Schwartz, A. L. Cellular receptors for the plasminogen activators. Blood 83, 3427-3436 (1994).
24 Nyberg, P., Ylipalosaari, M., Sorsa, T. & Salo, T. Trypsins and their role in carcinoma growth. Exp Cell Res 312, 1219-1228 (2006).
25 Dano, K. et al. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44, 139-266 (1985).
26 Almholt, K. et al. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. International Journal of Cancer 113, 525-532 (2005).
27 Collen, D. & Lijnen, H. R. Thrombolytic agents. Thromb Haemost 93, 627-630 (2005).
28 Pennica, D. et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301, 214-221 (1983).
29 Blasi, F., Riccio, A. & Sebastio, G. Human plasminogen activators. Genes and proteins structure. Horiz Biochem Biophys 8, 377-414 (1986).
30 Collen, D. & Lijnen, H. R. Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2, 541-546 (2004).
31 Kwaan, H. C. & McMahon, B. The Plasminogen Activator System and Cancer. Pathophysiology of Haemostasis and Thrombosis 36, 184-194 (2007).
32 Bernik, M. B. & Kwaan, H. C. Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest 48, 1740-1753 (1969).
33 Kwaan, H. C., Wang, J., Svoboda, K. & Declerck, P. J. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 82, 1702-1708 (2000).
34 Santin, A. D. et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer 112, 14-25 (2004).
35 Verspaget, H. W. Plasminogen activation system and colorectal cancer biology. Gastroenterology 108, 1953 (1995).
36 Ito, Y. et al. Plasminogen activation system in active even in thyroid tumors; an immunohistochemical study. Anticancer Res 16, 81-89 (1996).
37 Magdolen, V. et al. Inhibition of the tumor-associated urokinase-type plasminogen activation system: effects of high-level synthesis of soluble urokinase receptor in ovarian and breast cancer cells in vitro and in vivo. Recent Results Cancer Res 162, 43-63 (2003).
38 Look, M. P. et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 94, 116-128 (2002).
39 Harbeck, N., Kates, R. E. & Schmitt, M. Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol 20, 1000-1007 (2002).
40 Foekens, J. A. et al. Plasminogen activator inhibitor-2: prognostic relevance in 1012 patients with primary breast cancer. Cancer Res 55, 1423-1427 (1995).
41 Skelly, M. M. et al. Urokinase-type plasminogen activator in colorectal cancer: relationship with clinicopathological features and patient outcome. Clin Cancer Res 3, 1837-1840 (1997).
42 Ganesh, S. et al. Urokinase receptor and colorectal cancer survival. Lancet 344, 401-402 (1994).
43 Kockar, C. et al. Global fibrinolytic capacity increased exponentially in metastatic colorectal cancer. Clin Appl Thromb Hemost 11, 227-230 (2005).
44 Hataji, O. et al. Increased circulating levels of thrombin-activatable fibrinolysis inhibitor in lung cancer patients. Am J Hematol 76, 214-219 (2004).
45 Pavey, S. J., Hawson, G. A. & Marsh, N. A. Impact of the fibrinolytic enzyme system on prognosis and survival associated with non-small cell lung carcinoma. Blood Coagul Fibrinolysis 12, 51-58 (2001).
46 Kwaan, H. C., Lo, R. & McFadzean, A. J. Antifibrinolytic activity in primary carcinoma of the liver. Clin Sci 18, 251-261 (1959).
47 Schmitt, M. et al. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 78, 285-296 (1997).
48 Soff, G. A. et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 96, 2593-2600 (1995).
49 Kwaan, H. C. & McMahon, B. The Role of Plasminogen-Plasmin System in Cancer. Coagulation in Cancer 148, 43-66 (2009).
50 Caiolfa, V. R. et al. Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J Cell Biol 179, 1067-1082 (2007).
51 Cunningham, O. et al. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J 22, 5994-6003 (2003).
52 Bugge, T. H. et al. Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90, 4522-4531 (1997).
53 Curino, A. et al. Plasminogen promotes sarcoma growth and suppresses the accumulation of tumor-infiltrating macrophages. Oncogene 21, 8830-8842 (2002).
54 Palumbo, J. S. Plasminogen supports tumor growth through a fibrinogen-dependent mechanism linked to vascular patency. Blood 102, 2819-2827 (2003).
55 McMahon, G. A. Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. Journal of Biological Chemistry 276, 33964-33968 (2001).
56 Bajou, K. et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 23, 6986-6990 (2004).
57 Boehm, M. & Nabel, E. G. Cell cycle and cell migration: new pieces to the puzzle. Circulation 103, 2879-2881 (2001).
58 Bonneton, C., Sibarita, J. B. & Thiery, J. P. Relationship between cell migration and cell cycle during the initiation of epithelial to fibroblastoid transition. Cell Motil Cytoskeleton 43, 288-295 (1999).
校內:2021-12-31公開