| 研究生: |
劉意萱 Liu, Yi-Syuan |
|---|---|
| 論文名稱: |
台灣西南部土壤中稀土元素含量及物理性質之研究 Investigating on the Rare Earth Elements and the Physical Properties of Soil Samples in Southwestern Taiwan |
| 指導教授: |
吳建宏
Wu, Jian-Hong |
| 共同指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 稀土元素 、物理性質 、台灣西南部 、獨居石 |
| 外文關鍵詞: | Rare earth elements, Physical properties, Southwestern Taiwan, Monazite |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於台灣西南部稀土元素的含量與來源以及土壤物性與稀土元素關聯性的報導鮮少,且全球對於稀土元素的需求也日益增加,因此探討台灣西南部的稀土元素、稀土礦物以及土壤物性為本研究的重點。
本研究對台灣西南部的土樣進行多項土壤物性試驗獲得各土樣之物理性質,並以X光繞射儀及掃描式電子顯微鏡測定不同土樣中稀土礦物-獨居石的含量以及產狀,同時利用X光螢光分析儀與感應耦合電漿質譜儀精確測量土樣中主量與稀土元素的含量,並比較稀土元素於研究區域中的變化。
X光繞射結果顯示獨居石確實存在於土樣之中,且半定量擬合結果顯示其含量約0.1至0.6 wt%(1000-6000 ppm),以中央山脈茂林板岩含量最高,西部麓山帶及西南海岸次之,西南外海最低。研究區域中、下游之次生獨居石產狀與中央山脈變質砂岩之獨居石外觀相似,且被褐簾石過度生長的獨居石源於變質帶。而土樣中SiO2含量均高於上部大陸地殼平均(UCC),表明了富含石英,主要長石成分的消耗也表示長石可能在風化過程中損失。各土樣之稀土濃度差異不大,大部分在150-350 ppm之間,僅YH-03樣本之稀土濃度較其他樣本高出許多,約1576 ppm。土壤物性與總稀土濃度無太大的關聯性,然而重稀土會吸附在黏土礦物上,使得土壤粒徑越小其重稀土元素的含量越高。本研究區域之平均稀土濃度為297.63 ppm,高於主要稀土開採國家(98.4-154.6 ppm),表明台灣西南部之土樣具有開採的潛力。
There is a scarcity of reports concerning the content and sources of rare earth elements in the southwestern region of Taiwan, as well as the correlation between soil properties and rare earth elements. Furthermore, the global demand for rare earth elements is steadily increasing. Thus, this study's main focus is on investigating the rare earth elements, rare earth minerals, and soil properties in the southwestern region of Taiwan.
In this research, various soil samples were subjected to soil property tests to determine their physical characteristics. The content and occurrence of monazite, a rare earth mineral, were measured using X-ray diffraction and scanning electron microscopy. Additionally, X-ray fluorescence analysis and inductively coupled plasma mass spectrometry were employed to measure both major and rare earth element content in the soil samples.
X-ray diffraction results indicated that the monazite content ranged from approximately 0.1 to 0.6 wt% (1000-6000 ppm), with the highest content found in Maolin slate and the lowest in the southwestern offshore region. The occurrence of secondary monazite in the study area resembled the appearance of monazite in the metamorphic sandstone of the Central Mountain Range. Most soil samples exhibited rare earth element concentrations between 150 and 350 ppm, with only the YH-03 sample having a higher rare earth element concentration, approximately 1576 ppm. Soil properties showed no correlation with total rare earth element concentrations, while smaller soil particle sizes were associated with higher concentrations of heavy rare earth elements. The average rare earth element concentration in the study area was 297.63 ppm, which is higher than those of major rare earth-producing countries (98.4-154.6 ppm).
英文參考文獻
1. Mineral commodity summaries 2023, USGS, 2023.
2. Alshameri A, He H, Xin C, Zhu J, Xinghu W, Zhu R, and Wang H. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 185: 149-161, 2019.
3. Anders E, and Grevesse N. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53: 197-214, 1989.
4. Anitha JK, Joseph S, Rejith RG, and Sundararajan M. Monazite chemistry and its distribution along the coast of Neendakara–Kayamkulam belt, Kerala, India. SN Applied Sciences 2: 812, 2020.
5. Antonick PJ, Hu Z, Fujita Y, Reed DW, Das G, Wu L, Shivaramaiah R, Kim P, Eslamimanesh A, Lencka MM, Jiao Y, Anderko A, Navrotsky A, and Riman RE. Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. The Journal of Chemical Thermodynamics 132: 491-496, 2019.
6. Aplan F. The processing of rare earth minerals. Rare Earths: Extraction, Preparation and Applications 15-34, 1989.
7. Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10: 1285-1303, 2019.
8. Beakawi Al-Hashemi HM, and Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technology 330: 397-417, 2018.
9. Borst AM, Smith MP, Finch AA, Estrade G, Villanova-de-Benavent C, Nason P, Marquis E, Horsburgh NJ, Goodenough KM, and Xu C. Adsorption of rare earth elements in regolith-hosted clay deposits. Nature communications 11: 4386, 2020.
10. Budzyń B, Harlov DE, Kozub-Budzyń GA, and Majka J. Experimental constraints on the relative stabilities of the two systems monazite-(Ce) – allanite-(Ce) – fluorapatite and xenotime-(Y) – (Y,HREE)-rich epidote – (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750 °C. Mineralogy and Petrology 111: 183-217, 2017.
11. Chen C-H, Lee C-Y, Lin J-W, and Chu M-F. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews 190: 224-246, 2019.
12. Cheng S, Li W, Han Y, Sun Y, Gao P, and Zhang X. Recent process developments in beneficiation and metallurgy of rare earths: A review. Journal of Rare Earths, 2023.
13. Chuang JMZMW. Experimental investigation on mechanical properties of a volcanic ash with different grain size gradations, 2009.
14. De Decker J. Functionalized Metal-Organic Frameworks as Selective Metal Adsorbents, 2017.
15. Ding SY, Cai ZY, and Ling H. Strength and deformation characteristics and critical state of rock fill. 32: 248-252, 2010.
16. Dukov I. Nomenclature of inorganic chemistry - IUPAC recommendations 2005. 16: 561-568, 2007.
17. Dutta T, Kim K-H, Uchimiya M, Kwon EE, Jeon B-H, Deep A, and Yun S-T. Global demand for rare earth resources and strategies for green mining. Environmental Research 150: 182-190, 2016.
18. Evensen NM, Hamilton PJ, and O'Nions RK. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42: 1199-1212, 1978.
19. Feng J-L, Hu Z-G, Ju J-T, and Zhu L-P. Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits. Quaternary International 236: 116-126, 2011.
20. Fowler AD, and Doig R. The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochimica et Cosmochimica Acta 47: 1131-1137, 1983.
21. Geldart D, Abdullah EC, Hassanpour A, Nwoke LC, and Wouters I. Characterization of powder flowability using measurement of angle of repose. China Particuology 4: 104-107, 2006.
22. Gupta CK, and Krishnamurthy N. Extractive metallurgy of rare earths. International Materials Reviews 37: 197-248, 1992.
23. Hao Q, Guo Z, Qiao Y, Xu B, and Oldfield F. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quaternary Science Reviews 29: 3317-3326, 2010.
24. Haque N, Hughes A, Lim S, and Vernon C. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3: 614-635, 2014.
25. Hatano N, Yoshida K, and Sasao E. Effects of grain size on the chemical weathering index: A case study of Neogene fluvial sediments in southwest Japan. Sedimentary Geology 386: 1-8, 2019.
26. Hedrick JB. Rare earth elements and yttrium. In Minerals Facts and Problems, Bureau of Mines Bull pp. 647–664, 1985.
27. Hedrick JB. Rare earths: The lanthanides, yttrium and scandium. 1992, p. pp. 1035–1061.
28. Hossain M, Islam MA, Badhon F, and Imtiaz T. Properties and Behavior of Soil - Online Lab Manual, 2021.
29. Janots E, Brunet F, Goffé B, Poinssot C, Burchard M, and Cemič L. Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154: 1-14, 2007.
30. Jordens A, Cheng YP, and Waters KE. A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering 41: 97-114, 2013.
31. Kabata-Pendias A. Geochemia pierwiastków śladowych w glebach. Przegląd Geologiczny 27: 543-546, 1979.
32. Kanazawa Y, and Kamitani M. Rare earth minerals and resources in the world. Journal of alloys and compounds 408: 1339-1343, 2006.
33. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, and Iwamori H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience - NAT GEOSCI 4: 535-539, 2011.
34. Kim K, and Jeong S. Separation of Monazite from Placer Deposit by Magnetic Separation. Minerals 9, 2019.
35. Lan Z. Authigenic monazite and xenotime Pb-Pb/U-Pb dating of siliciclastic sedimentary rocks. Earth-Science Reviews 104217, 2022.
36. Lau E. Preformulation studies. Separation science and technology 3: 173-233, 2001.
37. Leal Filho W, Kotter R, Özuyar PG, Abubakar IR, Eustachio JH, and Matandirotya NR. Understanding Rare Earth Elements as Critical Raw Materials. In: Sustainability, 2023.
38. Levy SI. The Rare Earths, Their Occurrence, Chemistry, and Technology. Longmans, Green, 1924.
39. Liu S-L, Fan H-R, Liu X, Meng J, Butcher AR, Yann L, Yang K-F, and Li X-C. Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews 157: 105428, 2023.
40. Long KR, Van Gosen BS, Foley NK, and Cordier D. The principal rare earth elements deposits of the United States—a summary of domestic deposits and a global perspective. Scientific Investigations Report 2010-5220. US Geological Survey 96, 2010.
41. Longjiang M, Duowen M, Ke H, and Jinghong Y. Distribution of the rare earth elements in the surface sediments from the lower Wuding River of China. Journal of Radioanalytical and Nuclear Chemistry 285: 359-364, 2010.
42. Lütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS, Duarte FA, and Dotto GL. Leaching of rare earth elements from phosphogypsum. Chemosphere 301: 134661, 2022.
43. McLennan SM. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Process. Review of Mineralogy 21: 169-200, 1989.
44. McLennan SMJG. Relationships between the trace element composition of sedimentary rocks and upper continental crust. 2(4), 2001.
45. Miao Y, and Horng J. Decomposition of Taïwan local black monazite by hydrothermal and soda fusion methods. In: Rare earths, 1988.
46. Miao YW, Horng JS, and Hoh YC. The preparation of Nd metal from Taiwan black monazite. In: Production and Electrolysis of Light Metals, edited by Closset B. Oxford: Pergamon, p. 271-278, 1989.
47. Mosier SRaEL. Mineralogy and Occurrence of Europium-Rich Dark Monazite. 1983.
48. Nesbitt HW, and Young GM. Formation and diagenesis of weathering profiles. The Journal of Geology 97: 129-147, 1989.
49. Qian Y, Zheng L, Jiang C, Chen X, Chen Y, Xu Y, and Chen Y. Environmental geochemical characteristics of rare-earth elements in surface waters in the Huainan coal mining area, Anhui Province, China. Environmental Geochemistry and Health 44: 3527-3539, 2022.
50. Quach D-T. Experimental studies on the behaviour of rare earth elements and tin in granitic systems. Tübingen, Univ., Diss., 2007.
51. Sadeghi M, Morris GA, Carranza EJM, Ladenberger A, and Andersson M. Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. Journal of geochemical exploration 133: 160-175, 2013.
52. Sappal S, Ramanathan A, Ranjan RK, Singh G, and Kumar A. Rare Earth Elements As Biogeochemical Indicators In Mangrove Ecosystems (Pichavaram, Tamilnadu, India). Journal of Sedimentary Research 84: 781-791, 2014.
53. Sengupta D, Gosen BSV, Verplanck PL, and Hitzman MW. Placer-Type Rare Earth Element Deposits. In: Rare Earth and Critical Elements in Ore DepositsSociety of Economic Geologists, 2016.
54. Silva YJABd, Nascimento CWAd, Silva YJABd, Biondi CM, and Silva CMCAC. Rare earth element concentrations in Brazilian benchmark soils. Revista Brasileira de Ciência do Solo 40: 2016.
55. Skurzyński J, Jary Z, Kenis P, Kubik R, Moska P, Raczyk J, and Seul C. Geochemistry and mineralogy of the Late Pleistocene loess-palaeosol sequence in Złota (near Sandomierz, Poland): implications for weathering, sedimentary recycling and provenance. Geoderma 375: 114459, 2020.
56. Spear FS, and Pyle JM. Apatite, monazite, and xenotime in metamorphic rocks, 2002.
57. Taylor SR, and McLennan S. Planetary crusts: their composition, origin and evolution. Cambridge University Press, 2009.
58. Tongfei Li, Qinglin X, Xinqing W, Yue L, Liheng C, and Shuai L. Metallogenic geological characteristics and mineral resource potential analysis of rare earth element resources in China. Earth Science Frontiers 25: 95, 2018.
59. Trifonov DN. The Rare-Earth Elements, 1963.
60. Vijayan S, Melnyk A, Singh R, and Nuttall K. Rare earths. Min Eng(Littleton, Colo);(United States) 41, 1989.
61. Wang J, Guo M, Liu M, and Wei X. Long-term outlook for global rare earth production. Resources Policy 65: 101569, 2020.
62. Wang J-J, Zhao D, Liang Y, and Wen H-B. Angle of repose of landslide debris deposits induced by 2008 Sichuan Earthquake. Engineering Geology 156: 103-110, 2013.
63. Wang L, Lu X, and Bo Y. Influence of particle size and gradation on repose angle of coarse-grained soil. 79-84, 2017.
64. Wang P, Du Y, Yu W, Algeo TJ, Zhou Q, Xu Y, Qi L, Yuan L, and Pan W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Reviews 201: 103032, 2020.
65. Wang X, Lei Y, Ge J, and Wu S. Production forecast of China׳ s rare earths based on the Generalized Weng model and policy recommendations. Resources Policy 43: 11-18, 2015.
66. WANG Y. Clay mineralogy of the Gutingkeng Mudstone, southern Taiwan. Acta Geologica Taiwanica 14: 9-19, 1970.
67. Wang Z-Y, Fan H, Zhou L, Yang K-F, and She H-D. Carbonatite-Related REE Deposits: An Overview. Minerals 10: 965, 2020.
68. Wei F, Zheng C, Chen J, and Wu Y. Study on the background contents on 61 elements of soils in China. Environmental Science 12: 12-19, 1991.
69. Wei T, Dong Z, Kang S, and Ulbrich S. Tracing the provenance of long-range transported dust deposition in cryospheric basins of the northeast Tibetan plateau: REEs and trace element evidences. Atmosphere 9: 461, 2018.
70. Wu K, Liu S, Kandasamy S, Jin A, Lou Z, Li J, Wu B, Wang X, AbdRahim Mohamed C, and Shi X. Grain-size effect on rare earth elements in Pahang River and Kelantan River, Peninsular Malaysia: Implications for sediment provenance in the southern South China Sea. Continental Shelf Research 189: 103977, 2019.
71. Wu L, Li Z, Ling, Shih Y-H, Mao, and Putlitz. Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis. Minerals 9: 583, 2019.
72. Wu Z, Chen Y, Wang Y, Xu Y, Lin Z, Liang X, and Cheng H. Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geology Reviews 157: 105446, 2023.
73. Yokoyama K, Tsutsumi Y, Lee C-S, Shen J, Lan C-Y, and Zhao L. Provenance study of tertiary sandstones from the Western foothills and Hsuehshan Range, Taiwan. Bulletin of the National Museum of Nature and Science Serial C 33: 7-26, 2007.
74. Yoshida S, Muramatsu Y, Tagami K, and Uchida S. Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environment International 24: 275-286, 1998.
75. Zaalouk A, and Zabady F. Effect of moisture content on angle of repose and friction coefficient of wheat grain. Misr Journal of Agricultural Engineering 26: 418-427, 2009.
76. Zhenfeng WJLXQ. Experimental studies on influence factors of permeability coefficients of coarse-grained soil. 2013.
中文參考文獻
1. 何春蓀,臺灣地質圖說明書增訂第二版,臺灣地質概論,中央地質調查所,共164頁,1986。
2. 何春蓀,台灣地質概論:台灣地質圖說明書,2006。
3. 宋國城、林慶偉、林偉雄、林文正,五萬分之一台灣地質圖說明書-甲仙,經濟部中央地質調查所,2000。
4. 吳茂成、蔡長泰、邱勤庭,大河的故事9:曾文溪-戀戀母河,時報文化,台北市,台灣,2001。
5. 吳樂群、陳華玟、顏一勤,五萬分之一台灣地質圖說明書-朴子、佳里、台南,經濟部中央地質調查所,2011。
6. 林朝棨,地形。台灣省文獻委員會,台灣通志稿卷1,共423頁,1957。
7. 林啟文、洪國騰,五萬分之一台灣地質圖說明書-美濃,經濟部中央地質調查所,2012。
8. 林啟文,五萬分之一台灣地質圖說明書-旗山,經濟部中央地質調查所,2013。
9. 洪奕星,臺灣地區地下水觀測網第三期計畫水文地質調查報告,臺中地區和花東縱谷地區之沉積物與沉積環境分析,中央地質調查所,共69頁,2005。
10. 徐達偉,臺灣西南海域永安海脊甲烷冷泉址沉積物之礦物自生作用,國立成功大學地球科學系博士論文,台南市,台灣,2015。
11. 張瑞津,濁水溪平原的地勢分析與地形變遷:臺灣師範大學地理研究報告,第11期,第199~225頁,1985。
12. 張憲卿,五萬分之一臺灣地質圖及說明書第17號,大甲,中央地質調查所,共63頁,1994。
13. 陳華玟,五萬分之一台灣地質圖說明書-高雄,經濟部中央地質調查所,1998。
14. 陳華玟、吳樂群、謝凱旋、何信昌,五萬分之一台灣地質圖說明書-高雄第二版,經濟部中央地質調查所,2001。
15. 陳培源、劉德慶、黃怡禎,台灣地質之十四-台灣之礦物,2004。
16. 陳培源,台灣西部之重砂礦床,2009。
17. 張憲卿,五萬分之一台灣地質圖說明書-嘉義,經濟部中央地質調查所,2008。
18. 陳文福和江崇榮,濁水溪扇洲及鄰近地區之沉積物分布與沉積環境:地質,第18卷,第2期,第17~28頁,1998。
19. 陳華玟、陳勉銘、石同生,五萬分之一臺灣地質圖及說明書第31號,南投,中央地質調查所,共50頁,2004。
20. 陳文山、楊志成、楊小青、吳樂群、林啓文、張徽正、石瑞銓、林偉雄、李元希、石同生、盧詩丁,從構造地形探討嘉南地區活動構造及構造分區。經濟部中央地質調查所彙刊。第17號,第53-77頁,2004。
21. 陳勉銘、陳華玟、朱傚祖、謝凱旋,從鑽探岩心探討彰化斷層的特性:中央地質調查所特刊,第20號,第34~48頁,2008。
22. 陳文山、游能悌、松多信尚、楊小青,地震地質與地變動潛勢分析計畫報告,斷層長期滑移速率與再現週期研究(1/4),中央地質調查所,共86頁,2008a。
23. 陳文山、林朝宗、楊志成、費立沅、謝凱旋,晚期更新世以來臺北盆地沉積層序架構與構造的時空演變:中央地質調查所彙刊,第21期,第61~106頁,2008b。
24. 陳明裕,隧道開挖面變形與施工法之相關性研究-以曾文水庫防淤隧道為例,國立成功大學土木工程系碩士論文,台南市,台灣,2018。
25. 郭俊超,鹽水溪上游土地改變影響及非工程減洪方法評估,2003。
26. 黃健哲,印尼東側達伊島漸新世島弧岩漿活動的年代與地球化學特徵,國立台灣大學地球科學系碩士論文,台北市,台灣,2022。(未公開)
27. 楊萬全,濁水溪平原的水文地質研究:地理學研究,第13期,57~91頁,1989。
28. 鄧屬予,台灣的沈積岩:中央地質調查所,235頁,1997。
29. 賴慈華、賴典章,五萬分之一台灣地質圖說明書-麥寮、西螺、台西、北港,經濟部中央地質調查所,2002。
30. 工研院能資所,雲林海岸遙測變遷分析研究:行政院農委會遙感探測技術發展策劃小組,共73頁,1996。
參考網站
1. 水利署第三河川局:https://www.wra03.gov.tw/
2. 水利署第四河川局:https://www.wra04.gov.tw/
3. 水利署第六河川局:https://www.wra06.gov.tw/
4. 水利署第七河川局:https://www.wra07.gov.tw/
5. 經濟部水利署:https://www.wra.gov.tw/
6. 中央地質調查所:https://www.moeacgs.gov.tw/
校內:2028-08-26公開