簡易檢索 / 詳目顯示

研究生: 簡永欽
Chien, Yung-Chin
論文名稱: 奈米碳球衍生物的嵌入與混摻對板晶排列以及薄膜內電荷傳輸的影響
Evolution of lamellar stacking upon the intercalation and mixing of methanofullerene and corresponding influences on charge transportation within thin film
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: PBTTT-C14PCBM薄膜結構板晶堆疊嵌入板晶修復元件電性
外文關鍵詞: PBTTT-C14, PCBM, thin film structure, intercalation, electrical properties
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以PBTTT-C14的有序相作為主體晶相,以不同的熱處理條件調控PCBM的分佈與嵌入。實驗結果發現,PCBM的嵌入趨勢隨著熱處理溫度的提高而上升,這個嵌入現象是因為PCBM與PBTTT-C14脂肪側鏈具有一定的親和性存在,使得嵌入由混和趨勢所主導,所以溫度的升高有助於嵌入的發生,和一般的嵌入現象不同。
    從實驗結果發現,PCBM傾向以聚集並隨機分佈的方式析出在PBTTT-C14的有序相上;當在特定溫度以上持溫時,一部份的PCBM會嵌入到PBTTT-C14的側鏈之間,另一部份過量的PCBM會傾向於在PBTTT-C14的側鏈上沿著c軸形成連續的聚集排列。這是,首次觀察到,側鏈排列對零維分子聚集行為的誘導效應;而再進一步提升溫度後,在PBTTT-C14側鏈上的PCBM會由於強烈的聚集結晶趨勢,使得PCBM進一步的聚集在PBTTT-C14液晶相中,推測這一個聚集的現象,會破壞PBTTT-C14板晶堆疊的有序性。
    為了證實PCBM的聚集會破壞PBTTT-C14板晶堆疊的有序性,利用浸泡法,在低溫以二氯甲烷長時間浸泡樣品去除PCBM後,再藉由持溫來修復PBTTT-C14板晶的有序性。而從X光繞射、電子顯微鏡和原子力顯微鏡的觀察發現,PCBM在高溫,一部份會嵌入在PBTTT-C14沿著a軸的板晶之間,另一部份會選擇在PBTTT-C14的b軸無序區沿著c軸聚集結晶,形成垂直網路區域的黑色條紋,並進一步破壞PBTTT-C14沿著b軸的連續性。而PBTTT-C14沿著a軸的板晶之間能夠在室溫發生修復行為,回復到原先的(100)間距;PBTTT-C14沿著b軸的板晶之間則必須到高溫才能發生修復行為,回復原先板晶堆疊的連續性。
    將這些不同條件的薄膜結構製備成元件並量測電性後發現,PBTTT-C14與PMMA的相分佈進行持溫形成連續板晶堆疊的有序相後,比起無序的相分佈,電性明顯上升。而在塗佈上PCBM分子後,元件便失去了半導體的特性,推測的原因有兩個,第一個原因可能是PCBM在表面形成載子的連續通道,第二個原因可能是PCBM的混摻對PBTTT-C14形成P-doped。而將PCBM在特定溫度以上進行持溫後,元件會重新恢復半導體的特性,但比起PBTTT-C14的有序相,電性稍微下降了一些;再將PCBM升到更高溫進行持溫,元件的電性下降至接近與PBTTT-C14和PMMA的無序相分佈相同,這一個量測的結果也呼應了PCBM聚集在PBTTT-C14的液晶相中的行為,確實破壞了PBTTT-C14板晶堆疊的有序性。
    這樣的研究成果不僅釐清了PCBM在PBTTT-C14晶相的嵌入機制和PBTTT的板晶修復行為,也了解到PCBM在不同的分佈位置對電性的影響,進一步了解薄膜結構與元件電性之間的關係。

    In this research, PBTTT-C14(Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]) and PMMA(Poly(methyl methacrylate)) are dissolved in chlorobenzene and two-phase distribution formed after spin coating. Upon designed thermal treatment, well-orientated stacking of PBTTT-C14 segments are widely developed. The following intercalation and mixing behaviors of PCBM([6,6]-Phenyl C71 butyric acid methyl ester) into ordered phases of PBTTT is studied as the main topic of this research.
    At room temperature, deposited PCBM molecules tend to continuously disperse on the surface of thin film. At temperature about 120oC, part of PCBM will intercalate into the cavity in the side-chain layer of PBTTT-C14 and remaining PCBM fraction is guided by surface side-chain packing to assemble into black thick stripe specifically along the c-axis of ordering packing of PBTTT-C14 on the surface. However, at higher temperature about 210oC, PCBM lamellae evolve within liquid crystalline (LC) phase of PBTTT-C14, which forms finer black stripe along the C14 c-axis with the reduction of pi-pi stacking regularity along the b-axis. Hence, following the intercalation of PCBM into PBTTT-C14, the mixing tendency is viewed to further cause the lamellar dispersion of PCBM within PBTTT-C14 LC phase. by the removal of PCBM and subsequent annealing, the stacking regularity is able to recover.
    For the evolved mixing and intercalation statuses of PCBM, the corresponding impacts on the performance of field-effect transistor have been measured and investigated. The charge mobility is realized to be enhanced via the improvement of regularity and continuity of molecular packing. However, with the deposition of PCBM, the measured device properties all decrease and are obviously worse. It is the evidence that PCBM destroy the regularity of molecular organization of PBTTT-C14.

    摘要 III 英文延伸摘要 V 致謝 XVI 目錄 XVIII 圖目錄 XXI 表目錄 XXVII 第一章 緒論 1 1.1 前言與研究動機 1 第二章 文獻回顧 2 2.1場效電晶體簡介 2 2.1.1場效電晶體之運作原理 2 2.1.2有機半導體材料之載子傳輸理論 3 2.1.3重要特性之介紹與公式 4 2.2摻雜帶來的影響 9 2.2.1影響載子傳導的因素 9 2.2.2摻雜的原理與效果 9 2.3有機高分子材料的摻雜 14 2.3.1摻雜的種類 14 2.3.2嵌入的限制 17 2.3.3嵌入對晶相電性的影響 18 第三章 實驗材料與方法 21 3.1 實驗材料 21 3.2 實驗儀器 27 3.3 實驗步驟 33 3.4 實驗流程 34 第四章 結果與討論 36 4.1 PBTTT-C14分子與PMMA分子相分佈形貌及PBTTT-C14分子有序相的形成 36 4.1.1 PBTTT-C14分子與PMMA分子相分佈形貌的形成 36 4.1.2 PBTTT-C14分子有序相的形成與鑑定 38 4.2 PCBM分子在PBTTT-C14有序相上的分佈情況探討 41 4.2.1 結晶結構分析 41 4.2.2 表面形貌分析 45 4.2.3 PBTTT-C14分子的板晶修復行為 52 4.3 元件電性分析 62 4.3.1 有機場效電晶體效能量測 62 第五章 結論 68 第六章 參考文獻 71

    [1]D. A. Neamen, Semiconductor Physics and Devices 4th Edition, 2013.
    [2]Y. Furuta, H. Mizuta, K. Nakazato, Y. T. Tan, T. Kamiya, Z. A. K. Durrani, H. Ahmed, K. Taniguchi, Carrier Transport across a Few Grain Boundaries in Highly Doped Polycrystalline Silicon, Jpn. J. Appl. Phys., 2001, 40, 615-617.
    [3]H. F. Mataré, Carrier transport at grain boundaries in semiconductors, J. Appl. Phys., 1984, 56, 2605-2631.
    [4]T. Kamiya, Z. A. K. Durrani, H. Ahmed, Control of grain-boundary tunneling barriers in polycrystalline silicon, Appl. Phys. Lett., 2002, 81, 2388-2390.
    [5]J. W. Tringe, J. D. Plummer, Electrical and structural properties of polycrystalline silicon, J. Appl. Phys., 2000, 87, 7913-7926.
    [6]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 1999, 401, 685-688.
    [7]S. Cho, K. L. Yuen, G. Wang, D. Moses, A. J. H. Surin, R. Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films, J. Appl. Phys., 2006, 100, 114503.
    [8]K. C. Dickey, J. E. Anthony, Y. L. Loo, Improving Organic Thin-Film Transistor Performance through Solvent-Vapor Annealing of Solution-Processable Triethylsilylethynyl Anthradithiophene, Adv. Mater., 2006, 18, 1721-1726.
    [9]P. Viville, R. Lazzaroni, J. L. Bredas, P. Moretti, P. Samorí, F. Biscarini, The Influence of Thermal Annealing on the Morphology of Sexithienyl Thin Films, Adv. Mater., 1998, 10, 57-60.
    [10]G. Horowitz, M. E. Hajlaoui, Mobility in Polycrystalline Oligothiophene Field-Effect Transistors Dependent on Grain Size, Adv. Mater., 2000, 12, 1046-1050.
    [11]G. Horowitz, M. E. Hajlaoui, Grain size dependent mobility in polycrystalline organic field-effect transistors, Synthetic Metals, 2001, 122, 185-189.
    [12]Y. Yamamoto, K. Yoshino, Y. Inuishi, Electrical Properties of Phthalocyanine-Halogen Complex, Jpn. J. Phys. Soc., 1979, 47, 1887-1891.
    [13]P. Pingel, R. Schwarzl, D. Neher, Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene), Appl. Phys. Lett., 2012, 100, 143303.
    [14]P. Pingel, D. Neher, Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ, Phys. Rev., 2013, B87, 115209.
    [15]D. T. Duong, H. Phan, D. Hanifi, P. S. Jo, T. Q. Nguyen, A. Salleo, Direct Observation of Doping Sites in Temperature Controlled, p-Doped P3HT Thin Films by Conducting Atomic Force Microscopy, Adv. Mater., 2014, 26, 6069-6073.
    [16]D. T. Duong, C. Wang, E. Antono, M. F. Toney, A. Salleo, The chemical and structural origin of efficient p-type doping in P3HT, Org. Electronics, 2013, 14, 1330-1336.
    [17]A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, Controlled n-type doping of a molecular organic semiconductor: Naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), J. Appl. Phys., 2000, 87, 4340-4343.
    [18]K. H. Yim, G. L. Whiting, C. E. Murphy, J. M. Halls, J. H. Burroughes, R. H. Friend, J. S. Kim, Controlling Electrical Properties of Conjugated Polymers via a Solution-Based p-type Doping, Adv. Mater., 2008, 20, 3319-3324.
    [19]H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers : Halogen Derivatives of Polyacetylene, (CH)x, J.C.S. Chem. Comm., 1977.
    [20]K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, Chem. Rev., 2007, 107, 1233-1271.
    [21]B. Lüssem, C. M. Keum, D. Kasemann, B. Naab, Z. Bao, K. Leo, Doped Organic Transistors, Chem. Rev., 2016, 116, 13714−13751.
    [22]A. C. Mayer, M. F. Toney, S. R. Scully, J. Rivnay, C. J. Brabec, M. Scharber, M. Koppe, M. Heeney, I. McCulloch, M. D. McGehee, Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells, Adv. Funct. Mater., 2009, 19, 1173-1179.
    [23]A. Swarnkar, W. J. Mir, A. Nag, Can B‑Site Doping or Alloying Improve Thermal-and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites, ACS Energy Lett., 2018, 3, 286−289.
    [24]X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett., 2005, 5, 579-583.
    [25]G. Dennler, M. C. Scharber, C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater., 2009, 21, 1323-1338.
    [26]J. M. Lobez, T. L. Andrew, V. Bulovic, T. M. Swager, Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene)Additives: A New Paradigm for Polymer Design, ACS Nano, 2012, 6, 3044-3056.
    [27] N. C. Miller, E. Cho, M. J. N. Junk, R. Gysel, C. Risko, D. Kim, S. Sweetnam, C. E. Miller, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, A. Amassian, D. A. Feliz, C. Knox, M. R. Hansen, D. Dudenko, B. F. Chmelka, M. F. Toney, J. L. Brédas, M. D. McGehee, Use of X-Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymer-Fullerene Bimolecular Crystal, Adv. Mater., 2012, 24, 6071.
    [28]A. F. Paterson, N. D. Treat, W. Zhang, Z. Fei, G. W. Moon, H. Faber, G. Vourlias, P. A. Patsalas, O. Solomeshch, N. Tessler, M. Heeney, T. D. Anthopoulos, Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm2 V-1 s-1, Adv. Mater., 2016, 28, 7791-7798.
    [29]A. F. Paterson, Y. H. Lin, A. D. Mottram, Z. Fei, M. R. Niazi, A. R. Kirmani, A. Amassian, O. Solomeshch, N. Tessler, M. Heeney, T. D. Anthopoulos, The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors, Adv. Electron. Mater., 2017, 1700464.
    [30]N. C. Cates, R. Gysel, Z. Beiley, C. E. Miller, M. F. Toney, M. Heeney, I. McCulloch, M. D. McGehee, Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation, Nano Lett., 2009, 9, 4153-4157.
    [31]A. C. Mayer, M. F. Toney, S. R. Scully, J. Rivnay, C. J. Brabec, M. Scharber, M. Koppe, M. Heeney, I. McCulloch, M. D. McGehee, Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells, Adv. Funct. Mater., 2009, 19, 1173-1179.
    [32]K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, Chem. Rev., 2007, 107, 1233-1271.

    無法下載圖示 校內:2025-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE