簡易檢索 / 詳目顯示

研究生: 楊茜文
Yang, Chein-Wen
論文名稱: 鋁合金(6061-T6)之高溫高速撞擊與微觀特徵分析
High temperature impact deformation and microstructure evolution of 6061-T6 aluminum alloy
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 霍普金森桿6061-T6鋁合金核反應器內結構材料高溫高應變速率差排密度疊差缺陷
外文關鍵詞: split Hopkinson bar, 6061-T6 aluminum alloy, structural materials of nuclear reactors, high temperature, high strain rate, dislocation density, stacking fault
相關次數: 點閱:167下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 6061-T6鋁合金具有相當優異的機械性能,如良好的成形性、耐腐蝕性、高強度比,因此大量應用於結構元件、飛機零組件、裝甲系統和高速機械等,甚至可以做為核反應器內部的結構材料。因此本實驗利用霍普金森高速撞擊試驗機及高溫加熱裝置,針對材料從100℃到350℃,應變速率分別為由1000s-1至5000 s-1下進行高速撞擊,以探討溫度及應變速率相對於材料之塑變行為及微觀結構之影響。
    實驗結果,溫度與應變速率對6061-T6鋁合金的影響很大,相同溫度條件之下,其塑流應力值、加工硬化率及應變速率敏感性係數均隨應變速率增加而增加,而熱活化體積則會下降。反之,相同應變速率條件下,其塑流應力值、加工硬化率及應變速率敏感性係數均隨溫度增加而下降,而熱活化體積則會上升。此外,藉由Zerilli-Armstrong構成方程式,可精準預測此合金在不同溫度及應變速率下的塑變行為。
    微觀結果方面,於穿透式電子顯微鏡下則可觀察到差排密度隨著應變速率上升而增加,隨溫度上升而減少,且可於高溫高應變速率時發現疊差缺陷的產生。最後結合巨觀與微觀之結果證明塑流應力與差排密度符合Bailey-Hirsch type關係式之線性關係。

    6061-T6 aluminum alloy has been used extensively as structural materials for internals of experimental nuclear reactors, aircraft fittings, amour systems and high-speed machinery for years due to its superior mechanical properties. In this study, the high temperature deformation and micro-structural evolution of 6061-T6 aluminum alloy under high strain rate loading condition are investigated by means of a split-Hopkinson bar. The specimens with longitudinal direction are heated using a clam-shell radiant-heating furnace. Impact tests are performed at strain rate ranging from 1×103 to 5×103 s-1 and temperatures between 100℃ and 350℃. The experimental results indicate that the flow response of 6061-T6 aluminum alloy is related to temperature and strain rate. At a constant temperature, plastic stress, work hardening rate and strain rate sensitivity all increase with the increasing strain rate, while the thermal activation volume decreases.
    However, at a constant strain rate, plastic stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. The observed that high temperature and high strain rate deformation behavior of 6061-T6 aluminum alloy can be adequately described using the Zerilli-Armstrong constitutive equation. Transmission electron microscopy observations reveal that the dislocation density increases with an increasing strain rate, but decreases with an increasing temperature. The strengthening effect observed at higher strain rates and lower temperatures is attributed to a greater dislocation density. The stacking fault is also found in high temperature and high strain rate. A linear relationship between the square root of the dislocation density and the true stress is also found.

    1 中文摘要 I 2 ABSTRACT II 3 致謝 III 4 總目錄 IV 5 表目錄 VII 6 圖目錄 VIII 7 符號說明 XIII 8 第一章 前言 1 9 第二章 理論與文獻回顧 3 2-1 鋁合金之介紹 3 2-2 6061鋁合金之介紹 5 2-3 鋁合金之熱處理方式 5 2-4 塑性變形之機械測試類別 6 2-5 一維波傳理論 8 2-6 霍普金森撞擊試驗機之理論基礎 9 2-7 材料塑性變形行為 12 2-8 材料構成方程式 16 10 第三章 實驗方法及步驟 26 3-1 實驗流程 26 3-2 實驗儀器與設備 26 3-2-1 動態機械性質測試系統:霍普金森撞擊試驗機 26 3-2-2 光學顯微鏡(OM) 28 3-2-3 穿透式電子顯微鏡(TEM) 29 3-2-4 雙噴式電解拋光機 29 3-2-5 低速切割機 29 3-2-6 加熱裝置 30 3-3 實驗步驟 30 3-3-1 實驗試件製備 30 3-3-2 動態衝擊實驗 30 3-3-3 試件金相之觀察(OM) 32 3-3-4 TEM試片製備 32 11 第四章 實驗結果與討論 36 4-1 應力-應變曲線 36 4-2 加工硬化率 38 4-3 應變速率效應 40 4-4 熱活化體積 41 4-5 溫度效應 42 4-6 活化能 43 4-7 理論溫升量 44 4-8 材料構成方程式 46 4-9 OM金相組織觀察 46 4-10 TEM微觀結構分析 47 12 第五章 結論 103 13 參考文獻 106 14 自述 115

    1. Frigaard, Grong, O. T. Midling, “A process model for friction stir welding of age hardening aluminum alloys”, Metallurgical and Materials Transactions A, Vol. 32A, pp. 2001-1189, 2000.
    2. Z. A Hamid, M. T. A. Elkhair, “Development of electroless nickel–phosphorous composite deposits for wear resistance of 6061 aluminum alloy”, Materials Letters, Vol. 57, pp. 720–726, 2002.
    3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, “Recent development in aluminium alloys for aerospace applications”, Materials Science and Engineering, A280, pp. 102–107, 2000.
    4. N. P. Wasekar, N. Ravi, P. S. Babu, L. R. Krishna, G. Sundararajan, “High-cycle fatigue behavior of microarc oxidation coatings deposited on a 6061-T6 Al Alloy”, Metallurgical and Materials Transactions A, 41(1): pp. 255-265, 2010.
    5. H. Kolsky “An investigation of the mechanical properties of materials at very high rates of loading”, Proceeding of the Physical Society , Vol. 62, pp. 676-699, 1949.
    6. F. E. Hauser, “Techniques for measuring stress-strain relations at high Strain Rate”, Experimental Mechanics, Vol. 6, pp. 395-406, 1966.
    7. A. J. Holzer, R. H. Brown, “Mechanical behaviors of metals in dynamic compression”, Journal of Engineering Materials and Technology, Vol. 101, pp. 238-247, 1979.
    8. S. N. Nasser and J. B. Isaacs, “Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys”, Acta Materialia. 45(3), pp. 907-919, 1997.
    9. K. A. Hartleya, J. Duffya, R. H. Hawley, “Measurement of the temperature profile during shear band formation in steels deforming at high strain rates”, Journal of the Mechanics and Physics of Solids, 35(3), pp. 283-301, 1987.
    10. S. C. Bergsma, M. E. Kassner, X. Li and M. A. Wall, “Strengthening in the new aluminum alloy AA 6069”. Materials Science and Engineering: A, 254(1), pp. 112-118, 1998.
    11. R. Braun, “Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet”. Materials and Corrosion, 56(3), pp. 159-165, 2005.
    12. R. R. Ambriz, G. Barrera, R. Garcia, V. H. Lopez, “A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA) ”. Materials & Design, 30(7), pp. 2446-2453, 2009.
    13. F. J. MacMaster, K. S. Chan, S. C. Bergsma and M. E. Kassner, “Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6”. Materials Science and Engineering: A, 289(1), pp. 54-59, 2000.
    14. G. M. D. Almaraz, V. H. M. Lemus, J. J. V. Lopez, “Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes”. Procedia Engineering, 2(1): pp. 805-813, 2000.
    15. J. C. Huang, C. S. Shin and S. L. I. Chan, “Effect of temper, specimen orientation and test temperature on tensile and fatigue properties of wrought and PM AA6061-alloys”. International Journal of Fatigue, 26(7): pp. 691-703, 2004.
    16. E. A. Starke, Jr and J. T. Staley, “Application of modern aluminum alloys to aircraft”, Progress in Aerospace Sciences, Vol. 32, pp. 131-172, 1996.
    17. F. Augereau, D. Laux, L. Allais, M. Mottot, C. Caes, “Ultrasonic measurement of anisotropy and temperature dependenceof elastic parameters by a dry coupling method appliedto a 6061-T6 alloy”, Elsevier, Vol.46, pp. 34–41, 2007.
    18. V. K. Kanth, B. N. P. Bai and S. K. Biswas, “Wear mechanisms in a hypereutectic aluminum silicon alloy sliding against steel”, Scripta Metallurgica et Materialia, Vol. 24, pp. 267-272, 1990.
    19. P. K. Kumar; Dr. K. Kishore, P. Laxminarayana, “Prediction Of thrust force and torque in drilling on aluminum 6061-T6 alloy”, International Journal of Engineering Research & Technology, Vol. 2 Issue 3, March - 2013.
    20. D. R. Curran, L. Seaman, D. A. Shockey, “ Linking dynamic fracture to microstructural process”, pp. 22-26, 1980.
    21. M. Song, R. Kovacevic, “Thermal modeling of friction stir welding in a moving coordinate system and its validation”, International Journal of Machine Tools & Manufacture, Vol. 43, p. 605-615, 2003.
    22. U. S. Lindholm and L. M. Yeakley, “ High Strain-rate Testing: Tension and Compression”, SESA Spring Meeting held in Ottawa, Ont. Can. on May pp. 16-19,1967.
    23. U. S. Lindholm and L. W. Yeakly, “High Strain-rate Testing: Tension and Compression”, Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
    24. W. S. Lee and C. F. Lin, “Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures”, Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
    25. J. D. Campbell, “Dynamic plasticity: macroscopic and microscopic aspects”, Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973.
    26. D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys”, Vol. III, American society for metals, p. 951, 1970.
    27. J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel”, Philosophical magazine, Vol. 21, pp. 63-82, 1970.
    28. A. Seeger, “Dislocation and mechanical properties of crystals”, Philosophical magazine, Vol. 46, pp. 1194-1217, 1955.
    29. H. Conrad, “ Thermally activated deformation of metals”, Journal of Metal, pp. 582-588, 1964.
    30. M. A. Meyers, D. J. Benson, O. Vöhringer, B. K. Kad, Q. Xue, H. H. Fu, “Constitutive description of dynamic deformation: physically-based mechanisms”, Materials Science and Engineering, Vol. 322, pp. 194–216, 2002.
    31. W. G. Ferguson, A. Kumar and J. E. Dorn, “Viscous drag on dislocations in aluminum at high strain rates”, Acta Metallurgica , Vol. 16, pp. 1189-1197, 1968.
    32. U. S. Lindholm and L. M. Yeakly, “Dynamic deformation of single and polycrystalline aluminum”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
    33. J. D. Campbell and A. R. Dowling, “The behaviour of materials subjected to dynamic incremental shear loading”, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970.
    34. D. C. Ludwigson, “ Modified Stress-Strain Relation for FCC Metals and Alloys”, Metallurgical and Materials Transactions A, Vol. 2, pp. 2825-2828, 1971.
    35. Z. Gronostajski, “The constitutive equations for FEM analysis”, Journal of. Material. Processing Technology, Vol. 106, pp. 40-44, 2000.
    36. L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A basic approach for strain rate dependent energy conversion including heat transfer effects: an experimental and numerical study”, Journal of. Material. Processing Technology, Vol. 182, pp. 319-326, 2007.
    37. R. W. Armstrong, F. J. Zerilli, “Dislocation mechanics aspects of plastic instability and shear banding”, Mechanics of Materials, Vol. 17, pp. 318-327, 1994.
    38. F. J. Zerilli and R. W. Armstrong, “The effect of dislocation drag on the stress-strain behavior of F.C.C. metals”, Acta Metallurgica et Materialia, Vol. 40. No. 8, pp. 1803-1808, 1992.
    39. D. Umbrello, R. M'Saoubi and J. C. Outeiro, “The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel”, International Journal of Machine Tools and Manufacture, Vol. 47, pp. 462-470, 2007.
    40. W. J. Kang, S. S. Cho, H. Huh, D.T. Chung, “Modified Johnson-Cook model for vehicle body crashworthiness simulation”, Special Issue, Vol. 21, Nos 4/5, pp. 424-435, 1999.
    41. Y. C. Lin, X. M. Chen,“A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel”, Computational Materials Science, Vol. 49, pp. 628-633, 2010.
    42. J. Zhang, D. C. Weckman, Y. Zhou, “Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd: YAG laser welds”, Welding Journal, January, Vol. 87, pp. 18-30, 2008.
    43. L. E. Murr, G. Liu, J. C. Mcclure, “A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium”, Journal of Materials Science, Vol. 33, pp. 1243 - 1251, 1998.
    44. W. S. Lee and T. H. Chen, “Dynamic deformation behavior and microstructural evolution of high-strength weldable Aluminum scandium (Al-Sc) alloy”, Materials Transactions, Vol. 49, No. 6 pp. 1284-1293, 2008.
    45. S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd, W. J. Poole, “The deformation behaviour of AA6111 as a function of temperature and precipitation state”, Materials Science and Engineering A , Vol. 319-321, pp. 461-465, December 2001.
    46. B. Viguier, “Dislocation densities and strain hardening rate in some intermetallic compounds”, Materials Science and Engineering A, Vol. 349, pp. 132-135, 2003.
    47. D. Chu, J. W. Morris, Jr , “The influence of microstructure on work hardening in aluminum”, Acta Materialia, Vol. 44, No. 7, pp. 2599-2610, 1996.
    48. F. Bergner, G. Zouhar, G. Tempus, “The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime”, International Journal of Fatigue, Vol. 23, pp. 383-394, 2001.
    49. L. Shi and D. O. Northwood, “The mechanical behavior of an AISI Type 310 stainless steel”, Acta Metallurgica et Materialia, Vol. 43, No. 2, pp. 453-460, 1995.
    50. U. S. Lindholm, L. M. Yeakley, “ Dynamic deformation of single and polycrystalline aluminium”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41 to 53, 1965.
    51. F. Pfefferkorn, S.Lei, Y.Jeon, G.Haddad, “A metric for defining the energy efficiency of thermally assisted machining”, International Journal of Machine Tools & Manufacture, Vol. 49, pp. 357-365, 2009.
    52. D. J. Chakrabarti and D. E. Laughlin, “Phase relations and precipitation in Al–Mg–Si alloys with Cu additions". Progress in Materials Science, 49(3), pp. 389-410, 2004.
    53. D. G. Eskin, “Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys”, Journal of Materials Science, 38, pp. 279-290, 2003.
    54. M. Cabibbo, E. Evangelista and M. Vedani, “Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy”, Metallurgical and Materials Transactions A, 36(5), pp. 1353-1364, 2005.
    55. A. K. Gupta and D. J. Lloyd, “Precipitation hardening in Al–Mg–Si alloys with and without excess Si”, Materials Science and Engineering: A, Vol. 316(1), pp. 11-17, 2001.
    56. A. K. Gupta, P. H. Marois and D. J. Lloyd. “Confirming computer calculations of phase stability with the experimental observations in automotive alloy AA6111”, Materials Science Forum Vols. 519-521, pp. 177-182, 2006.
    57. X. D. Ren, L. Ruan, S. Q. Yuan, N. F. Ren, L. M. Zheng, Q. B. Zhan, J. Z. Zhou, H. M. Yang, Y. Wang, F. Z. Dai, “Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: Effect of tempering at the elevated temperatures”, Materials Science & Engineering A , Vol. 578, pp. 96–102, 2013.
    58. Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida, D. Neov, “In Situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation”, Acta Materialia, Vol. 51, pp. 819-830, 2003.
    59. P. Trivedia, D. P. Fielda, H. Weilandb, “Alloying effects on dislocation substructure volution of aluminum alloys”, International Journal of Plasticity, Vol. 20, pp. 459-476, 2004.
    60. T. O., M. Kawamukai, H. Zbib, “The determination of dislocation densities in thin films”, International Journal of Plasticity , Vol. 23 , pp. 897–914, 2007.
    61. M. Tanaka, R. Kato, T. Fujita and R. Yoda, “Microstructures of cutting chips of SUS430 and SUS304 steels, and NCF 750 and 6061-T6 Alloys”, ISIJ International, Vol. 51, No. 7, pp. 1142–1150, 2011.
    62. W. J. Kim J. Y. Wang, S. O. Choi, H. J. Choi, H. T. Sohn, “Synthesis of ultra high strength Al–Mg–Si alloy sheets by differential speed rolling”, Materials Science and Engineering A, Vol. 520, pp. 23-28, 2009.
    63. W. S. Lee, T. H. Chen, “Dynamic mechanical response and microstructural evolution of high strength aluminum–scandium (Al–Sc) alloy”, Materials Transactions, Vol. 47, No. 2, pp. 355-363, 2006.
    64. W. S. Lee, W. C. Sue, C. F. Lin, C. J. Wu, “The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy”, Journal of Materials Processing Technology, Vol. 100, pp. 116-122, 2000.
    65. X. M. Zhang, H. J. Li, H. Z. Li, H. Gao, Z. G. Gao, Y. Liu, B. Liu, “Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar”, Transactions of Nonferrous Metals Society of China, Vol.18, pp.1-5, 2008.
    66. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, “High strain rate tensile testing of automotive aluminum alloy sheet”, International Journal of Impact Engineering , Vol.32, pp. 541–560, 2005.
    67. K. M. Mussert, M. Janssen, A. Bakker, S. Zwaag, “ Modelling fracture in an Al2O3 particle reinforced AA 6061 alloy using Weibull statistics”, Journal of Materials Science, Vol. 34, pp. 4097-4104, 1999.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE