簡易檢索 / 詳目顯示

研究生: 彭祈程
Peng, Chi-Cheng
論文名稱: D 型光纖於表面電漿共振感測器與偏光器之設計與製作
The Design and Fabrication of Fiber-Type Surface Plasmon Resonance Sensor and Polarizer by Using D-Shaped Optical Fiber
指導教授: 羅裕龍
Lo, Yu-Lung
李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 113
中文關鍵詞: D 型光纖,表面電漿共振感測器,共路外差干涉
外文關鍵詞: D-shaped optical fiber, Surface plasmon resonance sensor
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要是使用商業用的D 型保極化光纖來製作表面電漿共振感測器,以解決傳統單模光纖在製作時的困難,且完整的探討D 型光纖的蝕刻技術並利用非對稱波導理論來量測蝕刻深度與蝕刻速率。此外,D 型光纖的保偏極化特性被使用來解決一般存在於單模光纖表面電漿共振感測器的偏振不穩定現象。藉由蝕刻深度的控制,詳細探討與發展一系列的D 型光纖感測器與光學元件。最後,低環境影響之共路徑外差干涉術被完美的使用來量測表面電漿共振之相位飄移。

      In this thesis, the commercially available D-shaped polarization maintainoptical fiber is utilized to fabricate D-shaped optical fiber Surface plasmon resonance (SPR) sensor to solve the hardness from the fabrication of the general single mode optical fiber SPR sensor by polishing or etching. The general problem that is polarization unstable of single mode optical fiber SPR sensor is also overcome by using the polarization maintain characteristic of the D-shaped optical fiber. Besides, the etching technology of D-shaped optical fiber is fully discussed, and the asymmetrical waveguides theory is used to decide the etching depth and etching rate. What’s more important, a series of D-shaped optical fiber sensors and optical components are developed.Furthermore, the low environment effect common path Heterodyne Interferometry is perfectly used to work with the phase shift measurement for the D-shaped optical fiber SPR sensor.

    Abstract in Chinese…………………………………………………... I Abstract in English…………………………………………………… II Acknowledgment…………………………………………………….. III List of Contents………………………………………………………. IV List of Figures…………………………………………………………VIII List of Tables…………………………………………………………. XIV Chapter 1 Introduction 1.1 Preface………………………………………………………. 1 1.2 Research Motive……………………………………….……. 1 1.3 Research Methods…………………………………………... 2 1.4 Overview of Chapters……………………………………….. 3 Chapter 2 The History Review 2.1 History Review of SPR Sensors……………………….……. 10 2.2 History Review of Evanescent Wave Fiber Optic Sensors …………………………………………………………………... 11 2.3 History Review of Fiber-Type Polarizers…………………… 12 2.4 History Review of Single Mode Optical Fiber SPR Sensors …………………………………………………………………... 13 Chapter 3 Basic Theory 3.1 Evanescence Wave …………………………………………. 15 3.2 Surface Plasmon Resonance ……………………………….. 17 3.3 Three Layers Optical Waveguide…………………………… 20 Chapter 4 Optical-Type Surface Plasmon Resonance Sensor 4.1 Preface………………………………………………………. 30 4.2 Heterodyne Interferometry and Lightwave Modulation……. 30 4.3 Common-Path Heterodyne Interferometry…………………. 31 4.4 Measurement Methods of SPR Sensor……………………… 32 4.5 Parameters Comparison……………………………………...33 4.6 Experiments…………………………………………………. 34 4.7 Error Analysis……………………………………………….. 36 Chapter 5 Fabrication of The D-Shaped Optical Fiber Surface Plasmon Resonance Sensor 5.1 Preface………………………………………………………. 42 5.2 Etching of the D-Shaped Optical Fiber……………………... 42 5.3 Etching Rate Measurement…………………………………..44 Chapter 6 D-Shaped Optical Fiber Evanescent Wave Refractometer 6.1 Introduction…………………………………………………. 54 6.2 Theory………………………………………………………. 55 6.2.1 Phase shift measurement of birefringent model by Common-Path Heterodyne Interferometry…………... 56 6.2.2 Total internal reflection phase shift due to the surrounding refractive index various……………………………… 58 6.3 Experiments and Discuss…………………………………… 60 6.4 Conclusion…………………………………………………... 62 Chapter 7 D-Shaped Optical Fiber Metal-Clad Polarizer 7.1 Introduction…………………………………………………. 68 7.2 Theory………………………………………………………. 69 7.3 Experiment………………………………………………….. 71 7.3.1 Fabrication of D-shaped optical fiber polarizer………. 71 7.3.2 Experimental Setup…………………………………… 72 7.4 Results and Discuss…………………………………………. 73 7.4.1 D-shaped optical fiber polarizer utilizing thick metal cladding method……………………………………………….. 75 7.4.2 D-shaped optical fiber polarizer utilizing thin metal cladding method……………………………………………….. 76 7.5 Conclusion…………………………………………………... 78 Chapter 8 D-Shaped Optical Fiber Surface Plasmon Resonance Sensor 8.1 Introduction………………………………………………… 84 8.2 Theory ……………………….…………………………….. 85 8.3 Measurement Setup and Experiments ……………………… 86 8.4 Results and Discuss…………………………………….. 87 8.5 Conclusion……………………………………………… 88 Chapter 9 Conclusion and Future Work 9.1 Conclusion……………………………………………… 95 9.2 Future Work…………………………………………….. 96 Bibliography ………………………………………………………... 97 Appendix A: Four Layers Optical Waveguide theory analysis……… 106

    Adams, M. J., An introduction to optical waveguides, Wiley-Interscience,
    New York, 1981.
    Arun K., Rajeev J., and V., R. K.,” Fiber-Optic Polarizer Using Resonant
    Tunneling through a Multilayer Overlay,” Optical Fiber Technology, Vol. 3,
    pp. 339-346, 1997.
    Bergh, R. A., Lefevre, H. C., and Shaw, H. J., “Single-mode fiber-optic
    polarizer,” Optics Letters, Vol. 5, No. 11, pp. 479-481, 1980.
    Born, M. and Wolf, E., Principles of Optics. New York: Pergamon, 1987, sec.
    8.6.1, Eq. (8).
    Boardman(Ed.), A.D., Electromagnetic surface modes, John Wiley and Sons,
    1982.
    Cullen, D.C., Brown, R.G., and Lowe, C.R., “Detection of immunocomplex
    formation via surface plasmon resonance on goldcoated diffraction gratings,”
    Biosensors, Vol. 3, pp. 211–225, 1987.
    Chen K. H., Hsu, C. C., and Su, D. C., “Interferometric optical sensor for
    measuring glucose concentration,” Applied Optics, Vol. 42, No. 28, pp.
    98
    5774-5776, 2003.
    Digonnet, M. J. F, Feth, J. R., and Stokes, L. F., “Measurement of the core
    proximity in polished fiber substrates and couplers.” Opt. Lett., Vol. 10, No. 9,
    pp. 463-465, 1985
    Diez, A., Andres, M. V., Cruz, J. L., “In-line fiber-optic sensors based on the
    excitation of surface plasma modes in metal-coated tapered fibers,” Sensors
    and Actuators B, Vol. 73, pp. 95-99, 2001.
    Eickhoff, W., “In-Line Fibre-Optic Polariser, ” Electronics Letters, Vol. 16,
    No.20, pp. 762-764, 1980.
    Feth, J. R., and Chang, C. L., “Metal-clad fiber-optic cutoff polarizer,” Optics
    Letters, Vol. 11, No. 6, pp. 386-388, 1986.
    Fontana, E., Dulman, H.D., Doggett, D.E., and Pantell, R.H.,” Surface
    plasmon resonance on a single mode optical fiber,” IEEE Transactions on
    Instrumentation and Measurement, Vol. 47, No. 1 , pp. 168 - 173,1998.
    Hosaka, T., Okamoto, K., and Edahiro, and Noda, J., “Single-Mode
    Fiber-Type Polarizer,” IEEE Transactions on Microwave Theory and
    Techniques, Vol. MTT-30, No. 10, pp.1557-1560, 1982.
    Hosaka, T., Okamoto, K., and Edahiro, T., “Fabrication of single-mode
    99
    fiber-type polarizer,” Optics Letters, Vol. 8, No. 2, pp. 124-126, 1983.
    Hideo, T., Hiroaki, T., and Toshihiko, Y., “Fiber-optic evanescent-wave
    methane-gas sensor using optical absorption for the 3.392-µm line of a He-Ne
    laser, ” Optics Letters, Vol. 12, No. 6, pp. 437-439, 1987.
    Heideman, R. G., Kooyman, R. P. H., Greve, J., and Bert, S. F. A., ”Simple
    interferometer for evanescent field refractive index sensing as a feasibility
    study for an immunosensor,” Applied Optics, Vol. 30, No. 12, pp. 1474-1479,
    1991.
    Heideman, R. G., Kooyman, R. P. H., and Greve, J., “Polarimetric
    optical-fibre sensor for biochemical measurements,” Sensors and Actuators B,
    Vol. 12, pp. 205-212, 1993.
    Homola, J.” Optical fiber sensor based on surface plasmon excitation, ”
    Sensors and Actuators B, Vol. B29, No. 1-3, pp 401-405, 1995.
    Homola, J., Sinclair S. Yee a, and Gu¨ nter Gauglitz b,” Surface plasmon
    resonance sensors: review,” Sensors and Actuators B, Vol. 54, pp.3-15, 1999
    Homola, J., ”Present and future of surface plasmon resonance biosensors,”
    Analytical and Bioanalytical Chemistry, Vol. 337, No. 3, pp. 528-539, 2003.
    Homola, J., Piliarik, M., Slavik, R., Ctyroky, J.,” Advances in development of
    miniature fiber optic surface plasmon resonance sensors,” Proceedings of
    SPIE - The International Society for Optical Engineering, Vol. 4416, pp.
    82-85, 2001.
    Johnstone, W., Thursby, G., Moodie, D., and McCallion, K., ” Fiber-optic
    refractometer that utilizes multimode waveguide overlay devices,” Optics
    Letters, Vol. 17, No. 21, pp. 1538-1540, 1992.
    Jorgenson, R.C., and Yee, S.S., “A fiber-optic chemical sensor based on
    surface plasmon resonance,” Sensors and Actuators B, Vol. 12, pp. 213–220,
    1993.
    Jo, K., Song G. H., Paek, U. C., Han, W. T.,” Fabrication and numerical
    analysis of D-shaped optical fiber polarizer coated with chromium film,”
    Optical Fiber Communication Conference and Exhibit, Vol. 2, pp.
    TuM3/1-TuM3/3, 2001.
    Kretschmann, E., Raether, H., “Radiative decay of non-radiative surface
    plasmons excited by light,” Z. Naturforsch., Vol. 23A, pp. 2135–2136, 1968
    Kooyman, R. P. H., Heideman, R. G., Koster, R., and Greve, J., “Optical Fiber
    Immunosensor Based on Polarimetry,” IEEE, pp.376-377, 1991
    Kano, H., and Kawata, S., “Surface-plasmon sensor for absorption-sensitivity
    enhancement,” Applied Optics, Vol. 33, No. 22, pp. 5166-5170,1994.
    Kohji Mitsubayashi, Yoshihiko Wakabayashi, Satoshi Tanimoto, Daisuke
    Murotomi, and Tatsuro Endo, “Optical-transparent and flexible glucose
    sensor with ITO electrode,” Biosensors and Bioelectronics, Vol. 19, pp. 67-71,
    2003.
    Liedberg, B., Nylander, C., Lundstro¨m, I., “Surface plasmons resonance for
    gas detection and biosensing,” Sensors and Actuators, Vol. 4, pp. 299–304,
    1983.
    Lambeck, P.V. “Integrated opto-chemical sensors,” Sensors and Actuators B,
    Vol. 8, pp. 103–116, 1992.
    Lemaire, P. J., Atkins, R. M., Mizrahi, V. and Reed, W. A., “High pressure H2
    loading as a technique for achieving ultrahigh UV photosensitivity and
    thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett., Vol. 29, No.
    13, pp. 1191-1193, 1993.
    Liedberg, B., Nylander, C., Lundstro¨m, I., “Biosensing with surface plasmon
    resonance—how it all started,” Biosensors Bioelectron, Vol. 10, pp. i–ix,
    1995.
    Lamb, B., Optical Biosensors: Present and Future.. Elsevier Science B.V.,
    2002, pp. 75-76.
    Lee, Byoungho “Review of the present status of optical fiber sensors,”
    Optical Fiber Technology, Vol. 9. pp. 57-79, 2003.
    Marcuse, D., Theory of Dielectric Optical Waveguides (Academic, New York,
    1974).
    Matsubara, K., Kawata, S., and Minami, S.,”Optical chemical sensor based on
    surface plasmon measurement,” Appl. Opt., Vol. 27, pp. 1160-1163, 1988.
    Muhammad, F. A., and Stewart, G., ”Polarised finite-difference analysis of
    D-fibre and application for chemical sensing,” International Journal of
    Optoelectronics, Vol. 7, No. 6, 705-721, 1992
    Muhammad, F. A., Stewart, G., Jin, W., “Sensitivity enhancement of D-fibre
    methane gas sensor using high-index overlay,” IEE PROCEEDINGS-J, Vol.
    140, No. 2, pp. 115-118, 1993.
    Muhammad, F. A., Al-Raweshidy, H. S., and J. M. Senior, ”Polarimetric
    optical D-fiber sensor for chemical applications, ” Microwave and Optical
    Technology Letters, Vol. 19, No. 5, pp. 318-321, 1998.
    Nylander, C., Liedberg, B., Lind, T., “Gas detection by means of surface
    plasmons resonance,” Sensors and Actuators, Vol. 3, pp. 79–88, 1982.
    Nelson, S.G., Johnston, K.S., and Yee, S.S, “High sensitivity surface plasmon
    resonance sensor based on phase detection,” Sensors and Actuators B, Vol.
    35–36, pp. 187-191, 1996.
    Otto, A., “Excitation of surface plasma waves in silver by the method of
    frustrated total reflection,” Z. Physik, Vol. 216, pp. 398-410, 1968.
    Othonos, A. and Lee, X., “Novel and Improved Methods of Writing Bragg
    Gratings with Phase Mask,” Photo. Technol. Lett., Vol. 7, No. 10, pp.
    1183-1185, 1995
    Ortega, B., Dong, L., Liu, W. F., de Sandro J. P., Reekie, L., Tsypina, S. I.,
    Bagratashvili, V. N., and Laming, R. I., “High-Performance Optical Fiber
    Polarizers Based on Long-Period Gratings in Birefringent Optical Fibers,”
    IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 9, NO. 10, 1997.
    Piliarik, M., Homola, J., Manikova, Z., Ctyroky, J., “Surface plasmon
    resonance sensor based on a single-mode polarization-maintaining optical
    fiber,” Sensors and Actuators, B: Chemical, Vol. 90, No. 1-3, pp. 236-242,
    2003.
    Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on
    Gratings, (Springer-Verlag, Berlin, 1988).
    Stewart, G., Norris, J., Clark, D. F., and Culshaw, B., “Evanescent-wave
    chemical sensors – a theoretical evaluation,” International Journal of
    Optoelectronics, Vol. 6, No. 3, pp. 227-238, 1991.
    Slavý´k, Radan., Homola, J., Ctyroky, J., “Miniaturization of fiber optic
    surface plasmon resonance sensor,” Sensors and Actuators B, Vol. 51, pp.
    311-315, 1998.
    Shen Shuai, Liu Tong, and Guo Jihua, “Optical phase-shift detection of
    surface plasmon resonance,” Applied Optics, Vol. 37, No. 10, pp. 1747-1751,
    1998.
    Slavik, R.,, Homola, J., Ctyroky, J., Brynda, E., “Novel spectral fiber optic
    sensor based on surface plasmon resonance,” Sensors and Actuators B, Vol.
    74, pp. 106-111, 2001.
    Trouillet, A., Ronot-Trioli, C, Veillas, C., and Gagnaire, H., “Chemical
    sensing by surface plasmon resonance in a multimode optical fibre,” Pure
    Appl. Opt. Vol. 5, pp. 227–237, 1996.
    Turan Erdogan, and Member, “Fiber Grating Spectra.”, IEEE Journal of
    Lightwave Technology., Vol. 15, No.8, 1277-1294, 1997.
    Torres, P.; Valente, L.C.G.; Linares, L.C.B.; von der Weid, J.P.,” Fiber Bragg
    grating polarizer,” Proceedings of the 2003 SBMO/IEEE MTT-S International,
    Vol. 2, No. 20-23, pp. 983 – 986, 2003.
    Vukusic, P.S., Bryan-Brown, G.P., and Sambles, J.R., “Surface plasmon
    resonance on grating as novel means for gas sensing,” Sensors and Actuators
    B, Vol. 8, pp. 155–160, 1992.
    Wood, R. W., “On a remarkable case of uneven distribution of light in a
    diffraction grating spectrum,” Phil. Magm., Vol. 4, 396–402, 1902
    Wang, A., Arya V., Nasta, M. H., Murphy, K. A., and Claus, R. O., “Optical
    fiber polarizer based on highly birefringent single-mode fiber,” Optics Letters,
    Vol. 20, No. 3, pp. 279-218, 1995
    Yamamoto, Y., Kamiya, T., Yanai, H.,” Characteristics of Optical Guided
    Modes in Multilayer Metal-Clad Planar Optical Guide with Low-Index
    Dielectric Buffer Layer,” IEEE Journal of Quantum Electronics, Vol. QE-11,
    No. 9, pp.729-1975, 1975.
    Yu, X., Zhao, L., Hong, Jiang, H., Wang, H., Yin, C., and Y., Zhu, S., ”
    Immunosensor based on optical heterodyne phase detection,” Sensors and
    Actuators, B: Chemical, Vol. 76, No. 1-3, Jun 1, pp. 199-202, 2001.
    Zhang, L.M., and Uttamchandani, D., “Optical chemical sensing employing
    surface plasmon resonance,” Electron. Lett., Vol. 23, pp. 1469-1470, 1988.
    趙凱華, 鍾錫華, ”光學”,儒林圖書有限公司, pp. 270-275, 1992.

    下載圖示 校內:2005-07-13公開
    校外:2005-07-13公開
    QR CODE