簡易檢索 / 詳目顯示

研究生: 蔣人達
Chiang, Jen-Ta
論文名稱: 應用微流技術生成磷脂質微米管之研究
Study of Phospholipid Microtubes Forming Utilizing Microfluidic Technology
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 磷脂質微米管微流道SU-8磷髓脂圖軟式微影
外文關鍵詞: Phospholipid, Microtubes, Microchannel, SU-8, Myelin figure, Soft Lithography
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於如何運用微流體技術,在微流道之中穩定的生成直徑1 ~ 10 microns大小的自組裝磷脂質微米管。在本文中生成的磷脂質微米管的方法是源於利用緩衝水溶液水合乾燥之磷脂質薄膜,使磷脂質薄膜在水溶液中自組裝產生封閉多層膜管狀結構也稱為磷髓脂圖,再驅動流體帶動並生成此一管狀結構。
    研究使用的晶片是使用微機電系統製程中的厚膜光阻技術SU-8來製作PDMS微流道的母模。在本文中也提出了如何利用”二次翻模”的技術,快速製作出機械性質良好的環氧樹脂晶片。
    在實驗設計方面我們探討了一些可能會對磷脂質微米管生成產生影響的因子,並針對微流道中的流體現象與磷脂質管成長之關係加以討論。偵測方式主要以螢光染劑配合螢光顯微鏡觀察實驗結果,另外再以共軛焦顯微鏡及掃瞄式電子顯微鏡做為輔助觀察實驗結果的工具。此自組裝生成的脂質微米管,有著可大量生成及自我導向的優點,可望在奈米碳管之外的技術中利用由下而上的技術建立類生物體的奈米結構,且應用於生物工程提供奈米粒子傳輸路徑上的發展。

    In this study we utilized the pressure gradient method stably forming self assembly phospholipid microtubes that are from 1 to 10 microns in diameter in the microchannel. The forming method of this study is based on hydrating dried phospholipid thin film.to form self assembly multi-lamellae tube structures so called myelin figures in solution.
    In this study we used micro electro-mechanical systems (MEMS) technology to fabricate SU-8 molds and “polydimethylsiloxane (PDMS)” microfluidic chips. Also in this research we proposed how to rapidly produce EPOXY chips that have good mechanical properties by “two times replicated” method.
    Furthermore, at the experiments we discussed some factors which would possible influence the forming process and relations between the fluid phenomena and the lipid tube forming process. We mainly used fluorescence microscope to observe the experiment results and aided confocal microscope and scanning electron microscope (SEM) to make advance observation. This self assembly lipid tubes have advantages of large growth and self aligned. We wish it could be improve nanoparticles transmission in bioengineering.

    摘要 II Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 11 1.4 實驗架構 13 第二章 脂質界面性質及理論分析 15 2.1磷脂質的分類、結構和型態特性 15 2.2特徵相轉換溫度 19 2.3磷脂質管之結構、型態特性及界面性質 20 2.3.1 圓柱幾何堆疊能量 21 2.2.1 彎曲能量 23 2.2.3 內部作用能量 25 第三章 微流道晶片製作 26 3.1 SU-8結構製作 26 3.2 PDMS微流道晶片製作 39 3.3 EPOXY翻模 43 第四章 脂質微米管生成實驗 46 4.1藥品及試劑 46 4.2實驗儀器 49 4.3實驗方法 55 4.3.1 實驗前處理 55 4.3.2 磷脂質管生成實驗 60 4.4偵測方法及結果 63 4.4.1 螢光顯微鏡工作原理 63 4.4.2 共軛焦顯微鏡工作原理 67 4.4.3 掃描式電子顯微鏡工作原理 70 第五章 結果與討論 73 5.1 生成條件測試 73 5.1.1 不同流速下對磷脂質管生成之影響 73 5.1.2 不同溫度對磷脂質管生成之影響 82 5.1.3 不同酸鹼環境對磷脂質管生成之影響 84 5.1.4 增加磷脂質分子的濃度對磷脂質管生成之影響 87 5.1.5 不同水合時間對磷脂質管生成之影響 91 5.2磷脂質管生成現象之討論 95 5.3磷脂質管結構討論 104 第六章 結論與建議 106 6.1 結論 106 6.2 建議 107 參考文獻 109

    參考文獻
    [1] M. Madou, Fundamentals of Microfabrication, CRC Press, NewYork, 1997.
    [2] Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, Taiwan, 2000.
    [3] B. Eggins, “Biosensors : an introduction,” Wiley, Chichester, New York, 1996.
    [4] V. G. Gavalas, and N. A. Chaniotakis, “Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon,” Anal. Chim. Acta, 404, pp. 67-73, 2000.
    [5] S. R. Tennison, “Phenolic-resin-derive activated carbons,” Applied Catalysis A: General, 173, pp. 289-311, 1998.
    [6] Z. Wang, J. Liu, Q. Liang, Y. Wang, and G. Luo, “Carbon nanotube-modified electrodes for the simultaneous determination of dopamine ascorbic acid,” Analyst, 127, pp. 653-658, 2002.
    [7] S. Sotiropoulou, V. Gavalas, V. Vamvakaki, and N. A. Chaniotakis, “Novel carbon materials in biosensor systems,” Biosensors and Bioelectronics, 18, pp. 211-215, 2003.
    [8] J. J. Davis, R. J. Coles, and H. A. O Hill, “Proteins electro-chemistry at carbon nanotube electrodes,” J. Electroanal. Chem., 440, pp. 279-282, 1997.
    [9] S. Roth, and R. H. Baughman, “Actuators of individual carbon nanotubes,” Current Appl. Phys., 2, pp. 311-314, 2002.
    [10] P. Kim, and C. M. Lieber, “Nanotube nanotweezers,” Science, 286, pp. 2148-2150, 1999.
    [11] M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, 381, pp. 678-680, 1996.
    [12] G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production,” Nature(London), 393, pp. 346-348, 1998.
    [13] E. Czerwosz, P. Dluaewski, “From fullerenes to carbon nanotubes by Ni catalysis,” Diam. Rel. Mater., 9, pp. 901-905, 2000.
    [14] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science, 274, 1701, 1996.
    [15] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S.G. Louie and A. Zettl, “Boron nitride nanotubes,” Science, 269, pp. 966-968, 1995.
    [16] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, “Diameter-selective raman scattering from vibrational modes in carbon nanotubes,” Science , 275, pp. 187-190, 1997.
    [17] S. J. Tans, R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, 393, pp. 49-51, 1998.
    [18] H. Nakamura and Y. Matsui, ”Silica gel nanotubes obtained by the sol-gel method,” J. Am. Chem. Soc., 117, pp. 2651-2658, 1995.
    [19] P. Hoyer, “Formation of a titanium dioxide nanotube array,” Langmuir, 12, pp. 1411-1417, 1996.
    [20] W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,” Science, 277, pp. 1287-1290, 1997.
    [21] L. Guo, Z. Wu, T. Liu, W. Wang and H. Zhu, “Synthesis of novel Sb2O3 and Sb2O5 nanorods,” Chem. Phys. Lett., 318, pp. 49-55, 2000.
    [22] G. Seifert, H. Terrones, M. Terrones and T. Frauenheim, “Novel NbS2 metallic nanotubes,“ Solid State Commun., 115, pp. 635-640, 2000.
    [23] S. Chiruvolu, R. Oda, I. Huc, M. Schmutz, S. J. Candau and F. C. MacKintosh, “Tuning bilayer twist using chiral counterions,” Nature, 399, pp. 566-568, 1999.
    [24] S. Chiruvolu, H. E. Warriner, E. Naranjo, S. H. J. Idziak, J. O. Rädler, R. J. Plano, J. A. Zasadzinski, and C. R. Safinya, “A phase of liposomes with entangled tubular vesicles,” Science, 266, pp. 1222-1224, 1994.
    [25] J. M. Schnur, “Lipid Tubules: A paradigm for molecularly engineered structures,” Science, 262, pp. 1669-1672, 1993.
    [26] V. Kralj-Iglič, A. Iglič, H. H¨agerstrand and P. Peterlin, ”Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles,” Phys. Rev. E, 61, pp. 4230-4237, 2000.
    [27] V. Kralj-Iglič, A. Iglič, H. H¨agerstrand and Bobrowska-H¨ M. agerstrand, “Tethers connecting daughter vesicles and parent red blood cell may be formed due to ordering of anisotropic membrane constituents,” Colloids Surf. A, 179, pp. 57-65, 2001.
    [28] V. Kralj-Iglič, U. Batista, , H. H¨agerstrand, A. Iglič, J. Majhenc, and M. Sok, “On mechanism of cell plasma membrane vesiculation,” Radiol. Oncol., 32, pp. 119-124, 1998.
    [29] S. Ochs, R. Pourmand, R. A. Jr Jersild and R. N. Friedman, “The origin and nature of beading: a reversible transformation of the shape of nerve fibers,” Prog. Neurobiol., 52, pp. 391-396, 1997.
    [30] A. Karlsson, R. Karlsson, M. Karlsson, A.S. Cans, A. Stromberg, F. Ryttsen, O. Orwar, “Molecular engineering networks of nanotubes and containers,” Nature, 409, pp. 150-153, 2001.
    [31] M. Karlsson, K. Sott, A. S. Cans, A. Karlsson,R. Karlsson, O. Orwar, “Micropipet-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers,” Langmuir, 17, pp. 6754-6758, 2001.
    [32] K. Sott, M. Karlsson, J. Pihl, J. Hurtig, T. Lobovkina, and O. Orwar, “Micropipet writing technique for production of two-dimensional lipid bilayer nanotube-vesicle networks on functionalized and patterned surfaces,” Langmuir, 19, pp. 3904-3908, 2002.
    [33] R. Karlsson, A. Karlsson, O. Orwar, “A nanofluidic switching device,” J. Am. Chem. Soc., 125, pp. 8442-8443, 2003.
    [34] R. Karlsson, M. Karlsson, J. Bergenholtz, B. Åkerman, A. G. Ewing, M. Voinova, O. Orwar, “Moving-Wall-Driven Flows in Nanofluidic Systems,”Langmuir, 18, pp. 4186-4190, 2002.
    [35] M. Karlsson, K. Sott, M. Davidson, A. S. Cans, P. Linderholm, D. Chiu, O. Orwar, “Formation of geometrically complex lipid nanotubevesicle networks of higher-order topologies,” PNAS, 99, pp.11573-11578, 2002.
    [36] R. Karlsson, A. Karlsson, O. Orwar, “A nanofluidic switching device,” J. Am. Chem. Soc., 125, pp. 8442-8443, 2003.
    [37] A. Karlsson, M. Karlsson, R. Karlsson, K. Sott, A. Lundqvist, M. Tokarz, O. Orwar, “Nanofluidic networks based on surfactant membrane technology,” Anal. Chem., 75, pp. 2529-2537, 2003.
    [38] R. Karlsson, A. Karlsson, O. Orwar, ”Formation and transport of nanotube-integrated vesicles in a lipid bilayer network,” J. Phys. Chem. B, 107, pp. 11201-11207, 2003.
    [39] M. Davidson, M. Karlsson, J. Sinclair, K. Sott, O. Orwar, “Nanotube-vesicle networks with functionalized membranes and interiors,” J. Am. Chem. Soc., 125, pp. 374-378, 2003.
    [40] A. S Cans, N. Wittenberg, R. Karlsson, L. Sombers, M. Karlsson, O. Orwar,and A. Ewing, “Artificial cells: Unique insights into exocytosis using liposomes and lipid nanotubes,” PNAS, 100, pp. 400-404, 2003.
    [41] T. Ming, S. Chang, “Artificial cells for cell and organ replacements,” Artificial Organs, 28, pp. 265-266, 2004.
    [42] http://www.hasylab.desy.de/newsletter/2002-01-01_print.htm
    [43] J. H. Fendler, “Membrane mimetic chemistry,” Wiley, New York, 1982.
    [44] D. J. Crommelin, H. Schreier, “Liposomes in colloidal drug delivery systems,” J. Kreuter, Ed., Marcel Dekker, New York, 1994.
    [45] D. D. Lasic, “Liposome in drug delivery in vesicles,” M. Rosoff, Ed., Marcel Dekker, New York, 1996.
    [46] P. Yager and P. Schoen, “Optical microscopic study of helical superstructures of chiral bilayer membranes,” Mol. Cryst. Liq. Cryst., 106, pp. 371-372,1984.
    [47] M. S. Spector, R. R. Price, and J. M. Schnur, “Chiral lipid tubules,” Adv. Mater., 11, pp. 337-340, 1999.
    [48] M. S. Spector, J. V. Selinger, A. Singh, J. M. Rodriguez, R. R. Price, and J. M. Schnur, “Controlling the morphology of chiral lipid tubules,” Langmuir, 14, pp. 3493-3500, 1998.
    [49] J. V. Selinger, J. M. Schnur, “Theory of chiral lipid tubules,” Physical Review Letters, 71, pp. 4091-4095, 1993.
    [50] T. Shimizu, M. Kogiso, and M. Masuda, “Vesicle assembly in microtubes,” Nature, 383, pp. 487-488, 1996.
    [51] T. Shimizu, “A new type of nanotube formed from molecules,” AIST Today International Edition, 10, pp. 10-11, 2003.
    [52] T. Shimizu, and G. John, “Molecule-up fabrication and manipulation of lipid nanotubes,” International Journal of Nanoscience, 1, pp. 465-469, 2002.
    [53] T. Shimizu, H. Frusawa, A. Fukagawa, Y. Ikeda, J. Araki, K. Ito, G. John, “Aligning a single-lipid nanotube with moderate stiffness,” Angew. Chem. Int. Ed., 42, pp. 72-74, 2003.
    [54] B. Yang, S. Kamiya, K. Yoshidaa and T. Shimizu, “Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders,” Chem. Commun., 42, pp. 500-501, 2004.
    [55] E. Evans, H. Bowman, A. Leung, D. Needham, D. Tinell, “Biomembrane templates for nanoscale conduits and networks,” Science, 273, pp. 933-935, 1996.
    [56] E. Evans and W. Rawicz, “Elasticity of fuzzy biomembranes,” Physical Review Letters, 79, pp. 2379-2382, 1997.
    [57] K. Akiyoshia, A. Itayac, S. M. Nomura, N. Onoe, K. Yoshikawaf, “Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids,” FEBS Letters, 534, pp. 33-38, 2003.
    [58] K. P. Brazhnikl, W. N. Vreeland, P. B. Howell, R. Kishore, J. Wells, K. Helmerson, L. E. Locascio, "Manipulating self-assembled nanotubes," 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 689-692, 2003.
    [59] B. Nasseri, A. T. Florence, “Some properties of extruded nonionic surfactant microtubes,” Int. J. Pharm. 254, pp. 11-16, 2003.
    [60] B. Nasseri, A. T. Florence, “Microtubules formed by capillary extrusion and fusion of surfactant vesicles,” International Journal of Pharmaceutics, pp. 91-98, 2003.
    [61] http://www.avantilipids.com/
    [62] 葉紹任, “共溶劑對陰陽性離子囊泡穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2003。
    [63] D. Marsh, “CRC handbook of lipid bilayers,” CRC Press, Boca Raton, 1990.
    [64] R. Virchow, “On the general appearance of the nerve-like structures from animal substrates,” Virchow Arch., 6, pp. 562-570, 1854.
    [65] M. Buchanan, S. U. Egelhaaf and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir, 16, pp. 3718-3726, 2000.
    [66] http://www.avantilipids.com/
    [67] C. D. Santangelo, P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E, 63, pp. 578-587, 2002.
    [68] I. Sakurai, Y. Kawamura, “Growth Mechanism of Myelin figures of Phosphatidylcholine,” Biochim. Biophys. Acta, 777, 347, 1984.
    [69] Ou-Yang Zhong-can, W. Helfrich, "Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders," Phys. Rev. A, 39, 5280, 1989.
    [70] http://www.microchem.com/
    [71] 吳崇義, “被動式微流體混合器之研發,” 國立成功大學工程科學系碩士論文, 2003。
    [72] T. R. Hsu, “MEMS & Microsystems Design and Manufacture,” McGraw-Hill, Boston, 2002.
    [73] D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis and G. C. Lisensky, “Replication and compression of bulk surface structures with polydimethylsiloxane elastomer,” Journal of Chemical Education, 76, pp. 537, 1999.
    [74] D. Armani, C. Liu and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” IEEE Micro Electro Mechanical Systems, pp. 222-227, 1999.
    [75] https://www.sigmaaldrich.com/
    [76] http://www.probes.com/
    [77] http://www.kdscientific.com/
    [78] http://www.itronx.com/
    [79] A. Karlsson, M. Karlsson, R. Karlsson, M. J. Davidson, A. Lundqvist, M. Tokarz, O. Orwar, “Electroinjectio Frida Ryttse´n of Colloid Particles and Biopolymers into Single Unilamellar Liposomes and Cells for Bioanalytical Applications,” Anal. Chem., 72, pp. 5857-5862, 2000.
    [80] http://www.olympus.com/
    [81] http://www.zeiss.com.hk/
    [82] http://www.Leica.com./
    [83] 郭懿純, 陳家全, 李家維, 楊瑞森, “生物電子顯微鏡學,” 國科會精密儀器中心, 民國八十年.
    [84] http://elearning.stut.edu.tw/caster/3/no3/3-2.htm
    [85] R. Kirsch, M. Mertig, W. Pompe, R. wahl, G. Sadowski, K. J. Bohm, C. E. Unger, ” Three-dimensional metallization of microtubules,” Thin Solid Films, 305, pp. 248-253, 1997.

    下載圖示 校內:2007-09-09公開
    校外:2009-09-09公開
    QR CODE