簡易檢索 / 詳目顯示

研究生: 黃宣旻
Huang, Hsuan-Min
論文名稱: 探討A 群鏈球菌nga 基因在內皮細胞生長之角色
The role of nga in group A streptococcus in intracellular multiplication of endothelial cell
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: A 群鏈球菌細胞內生長內皮細胞
外文關鍵詞: Streptococcus pyogenes, intracellular multiplication, endothelial cell
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A 群鏈球菌 (Group A streptococcus, GAS) 是人類致病菌,可以對宿主造成各種疾病。GAS過去被認為是細胞外致病菌,但越來越多的研究指出,GAS能夠在細胞內存活且生長。先前團隊的初步結果顯示,GAS無法在上皮細胞 (A549) 存活,但從侵襲性疾病之病人分離出的NZ131及A20卻能夠在內皮細胞 (HMEC-1) 生長,由於,GAS在細胞內生長之機轉仍然未知,因此我擬定探討GAS在內皮細胞作用的機制。首先,針對實驗室已建構好A20之毒力因子speB和調控因子luxS、rgg、fasB突變株,以及NZ131之毒力因子speB和調控因子luxS、rgg、lacD.1、srv突變株進行實驗。結果顯示,兩菌株的rgg突變株在細胞內的生長能力均下降,但rgg突變株會造成細胞死亡,導致細胞內的菌數也變少,因此我無法確認rgg在內皮細胞內生長的角色。根據O'Seaghdha及 Wessels (2013) 在角質細胞的研究,發現若鏈球菌溶血素O與Co-Toxin NAD-glycohydrolase (NADase) 共同作用,可避免autophagolysosme的成熟,而延長A群鏈球菌在細胞中存活的時間。因此,我建構了NZ131 nga突變株 (SW957) 和回補株 (SW958) 以及將NZ131完整之nga送至SF370 (SW959)。實驗結果發現SW957在HMEC-1中生長的能力比野生株及SW958差,而SF370野生株無法在細胞內存活,但SW959且能在細胞內生長。以免疫螢光染色及西方墨點法證實,NADase陽性的菌株:NZ131野生株、SW958及SW959到了感染後期會有LC-3 punctuate以及LC-3Ⅱ表現量增加。相反的,NADase陰性的菌株:SF370及SW957則沒有此現象。此外,以lysotracker標記酸化的autophagolysosome實驗,結果顯示NADase 陰性的菌株酸化的現象較為嚴重。當加入balfilomycin A1抑制lysosome的功能後, NADase 陰性的菌株可在內皮細胞中恢復生長。總結以上,nga可避免autophagolysosome酸化清除的機制,使A群鏈球菌能在內皮細胞中生長。

    Group A streptococcus (GAS) is an important human pathogen that causes diverse diseases. Although GAS is considered as extracellular pathogen, now accumulated evidences showed that GAS can multiply in intracellular environment. However, the detail mechanisms are still unclear. First, I investigated the effects of known virulence factors and regulators on intracellular multiplication in HMEC-1. The gentamicin protection assay was used to measure the bacterial survival. Wild-type A20 and NZ131 strains and their isogenic mutants including virulence factor speB and regulators luxS, rgg, fasB, lacD.1, and srv were analyzed. The results showed that only rgg mutant had a reduced ability of intracellular multiplication, whereas rgg mutant had higher cytotoxicity which may cause fewer recovered bacteria. Therefore, I could not conclude that rgg is involved in intracellular multiplication. In nga study, SF370 without NADase activity could not multiply in HMEC-1, whereas A20 and NZ131 with NADase activity could. When I complemented the nga gene from NZ131 to SF370, SW959 (SF370+pNZnga), the result not only showed the restored NADase activity but had multiplication ability. However, NZ131 nga isogenic mutant (SW957) reduced the multiplication in HMEC-1. By confocal microscopy and western blotting, LC-3 punctuates were formed in all strains, in the early infection. However, the NADase positive strains recruited LC-3 punctuates which were not found in NADase negative strains after longer infection. Furthermore, the lysotracker staining showed that the strains without NADase activity would be cleaned by acidified autophagolysosome, and these phenomena were recovered by the lysosome inhibitor, balfilomycin A1. In conclusion, my data demonstrated that nga can prevent the clearance of acidified autophagolysosome, suggesting that nga plays an important role in intracellular multiplication in HMEC-1.

    中文摘要 I Extended abstract II 致謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 符號及縮寫 XIII 緒論 1 一、A群鏈球菌 1 A.背景簡介 1 B. 疾病與流行病學調查 2 C. A群鏈球菌之調控因子- Rgg 3 D. A群鏈球菌之毒力因子 3 a. 鏈球菌熱源性外毒素B (streptococcal pyrogenic exotoxin B, SpeB) 4 b. 逃脫或躲避宿主清除之相關毒力因子 5 1. 鏈球菌溶血素O ( Streptolysin O) 5 2. 鏈球菌溶血素S ( Streptolysin S) 6 3. 煙酰胺腺嘌呤二核苷酸核苷酶Nicotine-Adenine-Dinucleotidase (NAD-glycohydrolase, NADase) 7 4. M蛋白質 9 二、A群鏈球菌逃脫宿主細胞清除及存活於宿主細胞內之機制 9 三、宿主細胞清除A群鏈球菌之機制 (Autophagy: cellular and molecular mechanisms) 11 A. Macro-autophagy 11 B. Micro-autophagy 11 C. Chaperone-mediated autophagy (CMA) 12 四、 研究目的 13 材料與方法 14 一、實驗藥品及溶液配方 14 二、菌種及質體來源 14 三、實驗菌種培養及保存 14 四、細菌DNA之萃取 15 A.大腸桿菌質體 (Plasmid) 15 B. A群鏈球菌質體 15 C. A群鏈球菌染色體DNA (Chromosome) 16 五、聚合酶連鎖反應 (Polymerase chain reaction, PCR) 16 六、限制酶酵素切割及DNA接合反應 17 七、大腸桿菌勝任細胞 (Competent cells) 製備 17 八、大腸桿菌細胞轉型作用 (Transformation) 17 九、格氏鏈球菌 (Streptococcus gordonii) 自然轉型作用 (Natural transformation) 18 A. 格氏鏈球菌勝任細胞之製備 18 B. 格氏鏈球菌細胞轉型作用 18 十、A群鏈球菌電穿孔轉型作用 (Electroporation) 19 A. A群鏈球菌勝任細胞之製備 19 B. A群鏈球菌細胞轉型作用 19 十一、南方墨點雜交法 (Southern blot hybridization) 19 A.探針 (Probe) 之製備 19 B.染色體DNA之限制酶切割 20 C. DNA轉漬 (Transfer) 20 D.雜交反應 (Hybridization) 20 E.清洗 (Wash) 與呈色作用 (Detection) 21 十二、人類微血管內皮細胞株 (Human microvascular endothelial cell line-1, HMEC-1) 之培養 21 A.細胞培養 21 B.細胞保存 21 C.細胞解凍 22 十三、A群鏈球菌於培養液中的生長曲線 22 十四、細菌在內皮細胞內存活能力分析 22 A. Gentamicin protection assay (Appendix 3) 22 B.共軛焦螢光顯微鏡 (confocal microscopy) 之操作 24 十五、蛋白質實驗之操作 25 A.細胞裂解物 (cell lysate) 的蛋白質製備 25 B.蛋白質濃度量 25 C.蛋白質膠體電泳 (SDS-PAGE) 25 D.西方點墨法 (Western blotting) 26 十六、乳酸脫氫酶 (lactate dehydrogenase, LDH cytotoxicity assay) 活性檢測 26 十七、MTT Assay細胞存活率分析 27 十八、煙酰胺腺嘌呤二核苷酸核苷酶 (Nicotine-Adenine-Dinucleotidase, NADase) 活性測定 28 十九、生物資訊分析工具 29 A.比較核苷酸與胺基酸序列之工具 29 B.統計學分析 29 結果 30 Ⅰ、A群鏈球菌之不同毒力因子和調控因子對細菌於內皮細胞生長的影響 30 一、各菌株在TSBY培養液中生長之差異 30 二、A20、NZ131及其突變株在內皮細胞中生長能力之差異 30 三、A20、NZ131及其rgg突變株於各感染時間點對細胞毒性的比較 31 Ⅱ、nga對細菌於內皮細胞內生長能力的影響 32 一、A20 、NZ131及SF370 NADase 活性檢測 32 二、建構NADase positve之SF370 32 三、SF370及SW959 (SF370+pNZnga) 在內皮細胞中生長能力之差異 33 四、建構NZ131 nga突變株與補回NZ131自身nga的回補株 34 五、NZ131 nga突變株 (SW957) 與回補株 (SW958) 在內皮細胞中生長能力之差異 34 六、SF370以及NZ131 nga突變株於各感染時間點對細胞毒性的比較 35 七、nga在autophagy的角色 35 八、nga可減緩酸性胞器之清除 36 九、LC-3 Ⅱ在感染進程中表現量的變化 37 十、Lysosome inhibitor (bafilomycin A1) 對於 A群鏈球菌在內皮細胞生長之影響 37 討論 39 一、A群鏈球菌之毒力及調控因子於細胞內生長的影響 39 二、A群鏈球菌之nga於細胞內存活的影響 40 A. 質體pNZnga (pMW779) 之構築 40 B. nga影響細菌貼附及入侵到內皮細胞的能力 41 C. nga影響細菌在內皮細胞存活生長的能力 41 D. nga影響autophagolysosome清除機制 42 E. nga影響autophagolysosome酸化現象 43 F. nga對於A群鏈球菌在內皮細胞中及臨床上之角色 43 G. SF370與NZ131在內皮細胞中生長能力的差異 44 三、A群鏈球菌於細胞中之相關研究 45 四、目前已知與宿主autophagy機制相關的病原菌 46 五、總結 46 參考文獻 48 圖表 57 附錄 75

    Amano, A., Nakagawa, I., and Yoshimori, T. (2006). Autophagy in innate immunity against intracellular bacteria. J Biochem 140, 161-166.
    Andre, I., Persson, J., Blom, A.M., Nilsson, H., Drakenberg, T., Lindahl, G., and Linse, S. (2006). Streptococcal M protein: structural studies of the hypervariable region, free and bound to human C4BP. Biochemistry 45, 4559-4568.
    Barnett, T.C., Liebl, D., Seymour, L.M., Gillen, C.M., Lim, J.Y., Larock, C.N., Davies, M.R., Schulz, B.L., Nizet, V., Teasdale, R.D., et al. (2013). The globally disseminated M1T1 clone of group A streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14, 675-682.
    Berggard, K., Johnsson, E., Morfeldt, E., Persson, J., Stalhammar-Carlemalm, M., and Lindahl, G. (2001). Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol 42, 539-551.
    Betschel, S.D., Borgia, S.M., Barg, N.L., Low, D.E., and De Azavedo, J.C. (1998). Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect Immun 66, 1671-1679.
    Bhakdi, S., Tranum-Jensen, J., and Sziegoleit, A. (1985). Mechanism of membrane damage by streptolysin-O. Infect Immun 47, 52-60.
    Bisno, A.L., Brito, M.O., and Collins, C.M. (2003). Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3, 191-200.
    Bricker, A.L., Carey, V.J., and Wessels, M.R. (2005). Role of NADase in virulence in experimental invasive group A streptococcal infection. Infect Immun 73, 6562-6566.
    Bricker, A.L., Cywes, C., Ashbaugh, C.D., and Wessels, M.R. (2002). NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol Microbiol 44, 257-269.
    Carapetis, J.R., Steer, A.C., Mulholland, E.K., and Weber, M. (2005). The global burden of group A streptococcal diseases. Lancet Infect Dis 5, 685-694.
    Carlson, A.S., Kellner, A., Bernheimer, A.W., and Freeman, E.B. (1957). A streptococcal enzyme that acts specifically upon diphosphopyridine nucleotide: characterization of the enzyme and its separation from streptolysin O. J Exp Med 106, 15-26.
    Carlsson, F., Sandin, C., and Lindahl, G. (2005). Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol 56, 28-39.
    Chaussee, M.S., Sylva, G.L., Sturdevant, D.E., Smoot, L.M., Graham, M.R., Watson, R.O., and Musser, J.M. (2002). Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun 70, 762-770.
    Chen, C.Y., Luo, S.C., Kuo, C.F., Lin, Y.S., Wu, J.J., Lin, M.T., Liu, C.C., Jeng, W.Y., and Chuang, W.J. (2003). Maturation processing and characterization of streptopain. J Biol Chem 278, 17336-17343.
    Chen, Y.Y., Huang, C.T., Yao, S.M., Chang, Y.C., Shen, P.W., Chou, C.Y., and Li, S.Y. (2007). Molecular epidemiology of group A streptococcus causing scarlet fever in northern Taiwan, 2001-2002. Diagn Microbiol Infect Dis 58, 289-295.
    Chiang-Ni, C., Wang, C.H., Tsai, P.J., Chuang, W.J., Lin, Y.S., Lin, M.T., Liu, C.C., and Wu, J.J. (2006). Streptococcal pyrogenic exotoxin B causes mitochondria damage to polymorphonuclear cells preventing phagocytosis of group A streptococcus. Med Microbiol Immunol 195, 55-63.
    Collin, M., and Olsen, A. (2001a). Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69, 7187-7189.
    Collin, M., and Olsen, A. (2001b). EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20, 3046-3055.
    Crotzer, V.L., and Blum, J.S. (2005). Autophagy and intracellular surveillance: modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci U S A 102, 7779-7780.
    Datta, V., Myskowski, S.M., Kwinn, L.A., Chiem, D.N., Varki, N., Kansal, R.G., Kotb, M., and Nizet, V. (2005). Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56, 681-695.
    Deretic, V., Delgado, M., Vergne, I., Master, S., De Haro, S., Ponpuak, M., and Singh, S. (2009). Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 335, 169-188.
    Dmitriev, A.V., McDowell, E.J., Kappeler, K.V., Chaussee, M.A., Rieck, L.D., and Chaussee, M.S. (2006). The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J Bacteriol 188, 7230-7241.
    Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12.
    Goldmann, O., Sastalla, I., Wos-Oxley, M., Rohde, M., and Medina, E. (2009). Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell Microbiol 11, 138-155.
    Gutierrez, M.G., Vazquez, C.L., Munafo, D.B., Zoppino, F.C., Beron, W., Rabinovitch, M., and Colombo, M.I. (2005). Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7, 981-993.
    Hakansson, A., Bentley, C.C., Shakhnovic, E.A., and Wessels, M.R. (2005). Cytolysin-dependent evasion of lysosomal killing. Proc Natl Acad Sci U S A 102, 5192-5197.
    Hamon, M., Bierne, H., and Cossart, P. (2006). Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4, 423-434.
    Hertzen, E., Johansson, L., Kansal, R., Hecht, A., Dahesh, S., Janos, M., Nizet, V., Kotb, M., and Norrby-Teglund, A. (2012). Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS One 7, e35218.
    Hertzen, E., Johansson, L., Wallin, R., Schmidt, H., Kroll, M., Rehn, A.P., Kotb, M., Morgelin, M., and Norrby-Teglund, A. (2010). M1 protein-dependent intracellular trafficking promotes persistence and replication of Streptococcus pyogenes in macrophages. J Innate Immun 2, 534-545.
    Hung, C.H., Tsao, N., Zeng, Y.F., Lu, S.L., Chuan, C.N., Lin, Y.S., Wu, J.J., and Kuo, C.F. (2012). Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group A streptococcal infection. Med Microbiol Immunol 201, 357-369.
    Ish-Horowicz, D., and Burke, J.F. (1981). Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989-2998.
    Ito, C., Saito, Y., Nozawa, T., Fujii, S., Sawa, T., Inoue, H., Matsunaga, T., Khan, S., Akashi, S., Hashimoto, R., et al. (2013). Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria. Mol Cell 52, 794-804.
    Johnsson, E., Berggard, K., Kotarsky, H., Hellwage, J., Zipfel, P.F., Sjobring, U., and Lindahl, G. (1998). Role of the hypervariable region in streptococcal M proteins: binding of a human complement inhibitor. J Immunol 161, 4894-4901.
    Kagawa, T.F., O'Toole P, W., and Cooney, J.C. (2005). SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 57, 650-666.
    Kao, C.H., Chen, P.Y., Huang, F.L., Chen, C.W., Chi, C.S., Lin, Y.H., Shih, C.Y., Hu, B.S., Li, C.R., Ma, J.S., et al. (2005). Clinical and genetic analysis of invasive and non-invasive group A streptococcal infections in central Taiwan. J Microbiol Immunol Infect 38, 105-111.
    Kapur, V., Majesky, M.W., Li, L.L., Black, R.A., and Musser, J.M. (1993a). Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A 90, 7676-7680.
    Kapur, V., Topouzis, S., Majesky, M.W., Li, L.L., Hamrick, M.R., Hamill, R.J., Patti, J.M., and Musser, J.M. (1993b). A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346.
    Kehoe, M., and Timmis, K.N. (1984). Cloning and expression in Escherichia coli of the streptolysin O determinant from Streptococcus pyogenes: characterization of the cloned streptolysin O determinant and demonstration of the absence of substantial homology with determinants of other thiol-activated toxins. Infect Immun 43, 804-810.
    Kimoto, H., Fujii, Y., Hirano, S., Yokota, Y., and Taketo, A. (2006). Genetic and biochemical properties of streptococcal NAD-glycohydrolase inhibitor. J Biol Chem 281, 9181-9189.
    Kreikemeyer, B., Boyle, M.D., Buttaro, B.A., Heinemann, M., and Podbielski, A. (2001). Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol Microbiol 39, 392-406.
    Kuo, C.F., Wu, J.J., Tsai, P.J., Kao, F.J., Lei, H.Y., Lin, M.T., and Lin, Y.S. (1999). Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect Immun 67, 126-130.
    Lancefield, R.C. (1962). Current knowledge of type-specific M antigens of group A streptococci. J Immunol 89, 307-313.
    Lancefield, R.C., and Dole, V.P. (1946). The properties of T antigens extracted from group a hemolytic streptococci. J Exp Med 84, 449-471.
    LaPenta, D., Rubens, C., Chi, E., and Cleary, P.P. (1994). Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A 91, 12115-12119.
    Laub, M.T., and Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annu Rev Genet 41, 121-145.
    Levine, B. (2005). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159-162.
    Limbago, B., Penumalli, V., Weinrick, B., and Scott, J.R. (2000). Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect Immun 68, 6384-6390.
    Loughman, J.A., and Caparon, M.G. (2006). A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. EMBO J 25, 5414-5422.
    Lowy, F.D. (1998). Staphylococcus aureus infections. N Engl J Med 339, 520-532.
    Lyon, W.R., and Caparon, M.G. (2003). Trigger factor-mediated prolyl isomerization i nfluences maturation of the Streptococcus pyogenes cysteine protease. J Bacteriol 185, 3661-3667.
    Lyon, W.R., and Caparon, M.G. (2004). Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 72, 1618-1625.
    Lyon, W.R., Gibson, C.M., and Caparon, M.G. (1998). A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17, 6263-6275.
    Lyon, W.R., Madden, J.C., Levin, J.C., Stein, J.L., and Caparon, M.G. (2001). Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol 42, 145-157.
    Ma, Y., Bryant, A.E., Salmi, D.B., Hayes-Schroer, S.M., McIndoo, E., Aldape, M.J., and Stevens, D.L. (2006). Identification and characterization of bicistronic speB and prsA gene expression in the group A streptococcus. J Bacteriol 188, 7626-7634.
    Madden, J.C., Ruiz, N., and Caparon, M. (2001). Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104, 143-152.
    Mangold, M., Siller, M., Roppenser, B., Vlaminckx, B.J., Penfound, T.A., Klein, R., Novak, R., Novick, R.P., and Charpentier, E. (2004). Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 53, 1515-1527.
    Marouni, M.J., and Sela, S. (2003). The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect Immun 71, 5633-5639.
    Marouni, M.J., Ziomek, E., and Sela, S. (2003). Influence of group A streptococcal acid gycoprotein on expression of major virulence factors and internalization by epithelial cells. Microb Pathog 35, 63-72.
    Meehl, M.A., Pinkner, J.S., Anderson, P.J., Hultgren, S.J., and Caparon, M.G. (2005). A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog 1, e35.
    Metzgar, D., and Zampolli, A. (2011). The M protein of group A streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence 2, 402-412.
    Miller, A.A., Engleberg, N.C., and DiRita, V.J. (2001). Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in S. pyogenes. Mol Microbiol 40, 976-990.
    Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873.
    Mizushima, N., Ohsumi, Y., and Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Struct Funct 27, 421-429.
    Molinari, G., Rohde, M., Talay, S.R., Chhatwal, G.S., Beckert, S., and Podbielski, A. (2001). The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol 40, 99-114.
    Molloy, E.M., Cotter, P.D., Hill, C., Mitchell, D.A., and Ross, R.P. (2011). Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9, 670-681.
    Nagamune, H., Ohkura, K., and Ohkuni, H. (2005). Molecular basis of group A streptococcal pyrogenic exotoxin B. J Infect Chemother 11, 1-8.
    Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., et al. (2004). Autophagy defends cells against invading group A streptococcus. Science 306, 1037-1040.
    Neely, M.N., Lyon, W.R., Runft, D.L., and Caparon, M. (2003). Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J Bacteriol 185, 5166-5174.
    Nizet, V., Beall, B., Bast, D.J., Datta, V., Kilburn, L., Low, D.E., and De Azavedo, J.C. (2000). Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68, 4245-4254.
    O'Seaghdha, M., and Wessels, M.R. (2013). Streptolysin O and its co-toxin NAD-glycohydrolase protect group A streptococcus from xenophagic killing. PLoS Pathog 9, e1003394.
    Podbielski, A., Beckert, S., Schattke, R., Leithauser, F., Lestin, F., Gossler, B., and Kreikemeyer, B. (2003). Epidemiology and virulence gene expression of intracellular group A streptococci in tonsils of recurrently infected adults. Int J Med Microbiol 293, 179-190.
    Py, B.F., Lipinski, M.M., and Yuan, J. (2007). Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3, 117-125.
    Reid, S.D., Chaussee, M.S., Doern, C.D., Chaussee, M.A., Montgomery, A.G., Sturdevant, D.E., and Musser, J.M. (2006). Inactivation of the group A streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol Med Microbiol 48, 283-292.
    Ribardo, D.A., and McIver, K.S. (2006). Defining the Mga regulon: Comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus. Mol Microbiol 62, 491-508.
    Rohde, M., Muller, E., Chhatwal, G.S., and Talay, S.R. (2003). Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 5, 323-342.
    Romao, S., and Munz, C. (2011). Autophagy of pathogens alarms the immune system and participates in its effector functions. Swiss Med Wkly 141, w13198.
    Sandin, C., Carlsson, F., and Lindahl, G. (2006). Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol 59, 20-30.
    Santic, M., Molmeret, M., Klose, K.E., and Abu Kwaik, Y. (2006). Francisella tularensis travels a novel, twisted road within macrophages. Trends Microbiol 14, 37-44.
    Schmidtchen, A., Frick, I.M., Andersson, E., Tapper, H., and Bjorck, L. (2002). Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46, 157-168.
    Schnaith, A., Kashkar, H., Leggio, S.A., Addicks, K., Kronke, M., and Krut, O. (2007). Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282, 2695-2706.
    Shelburne, S.A., 3rd, Granville, C., Tokuyama, M., Sitkiewicz, I., Patel, P., and Musser, J.M. (2005). Growth characteristics of and virulence factor production by group A streptococcus during cultivation in human saliva. Infect Immun 73, 4723-4731.
    Sierig, G., Cywes, C., Wessels, M.R., and Ashbaugh, C.D. (2003). Cytotoxic effects of streptolysin O and streptolysin S enhance the virulence of poorly encapsulated group A streptococci. Infect Immun 71, 446-455.
    Simon, D., and Ferretti, J.J. (1991). Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbiol Lett 66, 219-224.
    Staali, L., Morgelin, M., Bjorck, L., and Tapper, H. (2003). Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 5, 253-265.
    Steer, A.C., Law, I., Matatolu, L., Beall, B.W., and Carapetis, J.R. (2009). Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9, 611-616.
    Stevens, D.L. (1992). Invasive group A streptococcus infections. Clin Infect Dis 14, 2-11.
    Stevens, D.L., Salmi, D.B., McIndoo, E.R., and Bryant, A.E. (2000). Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome. J Infect Dis 182, 1117-1128.
    Stevens, D.L., Tanner, M.H., Winship, J., Swarts, R., Ries, K.M., Schlievert, P.M., and Kaplan, E. (1989). Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med 321, 1-7.
    Tatsuno, I., Sawai, J., Okamoto, A., Matsumoto, M., Minami, M., Isaka, M., Ohta, M., and Hasegawa, T. (2007). Characterization of the NAD-glycohydrolase in streptococcal strains. Microbiology 153, 4253-4260.
    Thulin, P., Johansson, L., Low, D.E., Gan, B.S., Kotb, M., McGeer, A., and Norrby-Teglund, A. (2006). Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 3, e53.
    Timmer, A.M., Timmer, J.C., Pence, M.A., Hsu, L.C., Ghochani, M., Frey, T.G., Karin, M., Salvesen, G.S., and Nizet, V. (2009). Streptolysin O promotes group A streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284, 862-871.
    Vergne, I., Chua, J., Singh, S.B., and Deretic, V. (2004). Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 20, 367-394.
    Walev, I., Bhakdi, S.C., Hofmann, F., Djonder, N., Valeva, A., Aktories, K., and Bhakdi, S. (2001). Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc Natl Acad Sci U S A 98, 3185-3190.
    Wang, C.W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy. Mol Med 9, 65-76.
    Weis, S., and Palmer, M. (2001). Streptolysin O: the C-terminal, tryptophan-rich domain carries functional sites for both membrane binding and self-interaction but not for stable oligomerization. Biochim Biophys Acta 1510, 292-299.
    Wessels, M.R. (2005). Streptolysin S. J Infect Dis 192, 13-15.
    Wexler, D.E., Chenoweth, D.E., and Cleary, P.P. (1985). Mechanism of action of the group A streptococcal C5a inactivator. Proc Natl Acad Sci U S A 82, 8144-8148.
    Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, Y. (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23, 33-42.
    Yan, J.J., Liu, C.C., Ko, W.C., Hsu, S.Y., Wu, H.M., Lin, Y.S., Lin, M.T., Chuang, W.J., and Wu, J.J. (2003). Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J Clin Microbiol 41, 4858-4861.
    Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991). Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266, 17707-17712.
    You, Y.H., Song, Y.Y., Yan, X.M., Wang, H.B., Zhang, M.H., Tao, X.X., Li, L.L., Zhang, Y.X., Jiang, X.H., Zhang, B.H., et al. (2013). Molecular epidemiological characteristics of Streptococcus pyogenes strains involved in an outbreak of scarlet fever in China, 2011. Biomed Environ Sci 26, 877-885.
    Zheng, P.X., Chung, K.T., Chiang-Ni, C., Wang, S.Y., Tsai, P.J., Chuang, W.J., Lin, Y.S., Liu, C.C., and Wu, J.J. (2013). Complete genome sequence of emm1 Streptococcus pyogenes A20, a Strain with an intact two-component system, CovRS, isolated from a patient with necrotizing fasciitis. Genome Announc 1:e00149-0012.

    無法下載圖示 校內:2018-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE