簡易檢索 / 詳目顯示

研究生: 陳凡軒
Chen, Fan-Hsuan
論文名稱: Mg65Cu25Gd10塊狀金屬玻璃之熱機械性質及熱塑加工性之研究
Study of the Thermomechanical Properties and Workability of Mg65Cu25Gd10 Bulk Metallic Glass
指導教授: 曹紀元
Tsao, Chi Y. A.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 非晶質塊狀金屬玻璃鎂合金機械性質擠型
外文關鍵詞: Amorphous, Bulk metallic glasses, Magnesium alloy, Mechanical properties, Extrusion
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用義守大學的噴射鑄造(Injection casting)設備,配合液態氮(liquid nitrogen)冷卻製備出Mg65Cu25Gd10直徑6mm的棒材,利用示差掃描卡計、X光繞射、SEM/EDS來鑑定非晶質的結構及組成成份。噴射鑄造的棒材(as-injection-cast Mg65Cu25Gd10 rod) ,經由連續升溫DSC曲線得到的特性溫度(Tg、Tx、Tm、Tl),使用玻璃形成能力(GFA)的參數(△Tx、Trg、γ、γm) 判斷液氮冷卻鑄造出的棒材,跟之前文獻[89-90, 95-97]同樣也是噴射鑄造出來的Mg65Cu25Gd10棒材相比較,發現略高於前人研究;在不同溫度下的恆溫DSC可以得到Mg65Cu25Gd10棒材的孕核時間(incubation time),找出適合進行熱機械性質及進行熱塑加工性的溫度區間。機械性質方面則利用在過冷液相溫度區間、在不同的定應變速率下進行壓縮試驗。求出應力對應變速率的關係-應變速率敏感係數m是否為接近1的牛頓型流體,出現超塑性變形的行為。利用背向式擠型來探討Mg65Cu25Gd10在過冷液相溫度區間的熱塑加工性,使用不同的持壓力量來進行;求出擠型應力對應變速率的關係-應變速率敏感係數m,探討是否接近牛頓型流體。

    Mg65Cu25Gd10 bulk metallic glass was synthesized via injection casting cooled by liquid nitrogen . The diameter of the injection-cast bars was 6 mm in diameter. The microstructure and constituent composition of Mg65Cu25Gd10 measured by DSC, XRD, and SEM equipped with EDS. All the four characteristic temperatures, Tg, Tx, Tm and Tl, of the Mg65Cu25Gd10 were obtained from continuous heating DSC traces. The glass forming abilities of the Mg65Cu25Gd10 cooling by liquid nitrogen are slightly higher than previous studies[89-90, 95-97] of injection-cast rods. The incubation time of as-injection cast Mg65Cu25Gd10 rod obtained from isothermal DSC traces, then the appropriate temperature in supercooled liquid region for hot deformation can be found. The compressive stress vs. strain relationships of as-injection cast Mg65Cu25Gd10 rod were obtained by compressive testing at various constant strain rates in supercooled liquid region. Furthermore, the strain rate sensitivity (m) can be extracted by equation related stress and strain rate. m value can determine the mechanism of deformation. When m value is very close to 1, deformation dominated by Newtonian fluid which has superplasticity behavior. Workability properties of Mg65Cu25Gd10 under supercooled liquid region investigated by backward extrusion. The relationship of stress for extrusion vs. strain rate, i.e. strain rate sensitivity were obtained from different holding forces, and check m value whether it is close to Newtonian fluid.

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 符號 XII 第一章 前言 1 1-1 非晶質金屬概述 1 1-2 塊狀金屬玻璃發展歷程 1 1-3 金屬玻璃的製作方式 4 1-4 非晶質特性 7 1-4-1 機械性質 7 1-4-2 磁性質 8 1-4-3 耐蝕性 9 1-4-4 其他性質 9 1-5 非晶質之應用 10 1-6 研究目的 11 第二章 文獻回顧及理論基礎 13 2-1 形成塊狀金屬玻璃之法則 13 2-2 有關金屬玻璃的熱力學 14 2-2-1非晶質結構是處於介穩態(Metastable) 14 2-2-2非晶質結構的特性溫度(Characteristic Temperature) 16 2-2-3示差掃描熱量分析儀(Differential Scanning Calorimeter)[79] 17 2-2-4 衡量玻璃形成能力的指標 18 2-2-4-1 簡化玻璃轉換溫度(Reduced Glass Transition Temperature, Trg = Tg / Tl) 18 2-2-4-2 過冷液態區間(Supercooled liquid region, SCL, △Tx = Tx - Tg) 19 2-2-4-3 γ 20 2-2-4-4 γm 21 2-3 非晶質金屬玻璃的結晶動力學 22 2-3-1非恆溫方法計算活化能—Kissinger plot [57] 22 2-3-2 修正之非恆溫分析法[58] 22 2-3-3 恆溫結晶動力學 23 2-3-3-1 結晶控制機構 23 2-3-3-2 恆溫結晶之活化能 24 2-4 機械性質 25 2-4-1 壓縮實驗分析 25 2-4-2應變速率敏感係數m (strain rate sensitivity) 26 2-4-3 牛頓型流體(Newtonian fluid)與非牛頓型流體(Non-Newtonian fluid) 27 2-4-4 黏度(Viscosity)與應變速率敏感係數m (strain rate sensitivity)的關係 28 2-5 熱塑加工性 29 2-5-1 擠型形式 29 2-5-2 擠型分析理論 30 2-6 應力誘發結晶(stress-induced crystallization) 32 第三章 實驗方法及步驟 33 3-1 Mg65Cu25Gd10製作 33 3-1-1 合金配製 33 3-1-2 電弧熔煉(Arc melting) 34 3-1-3 高週波熔煉(Induction melting) 35 3-1-4 噴射鑄造(Injection casting) 35 3-2 分析試片製備 36 3-3 熱性質分析 37 3-3-1連續升溫 38 3-3-2 恆溫DSC 38 3-4 機械性質分析 39 3-4-1 過冷液相區間壓縮 39 3-4-2 熱塑加工性–過冷液相區間擠型 39 3-5 微結構分析 41 3-5-1 X光繞射儀相鑑定(XRD) 41 3-5-2 掃描式電子顯微鏡(SEM) 41 第四章 結果與討論 42 4-1 成份分析-EDS 42 4-2 XRD及SEM結構鑑定 42 4-2-1 噴射鑄造棒材和經過壓縮過的試片XRD 42 4-2-2 噴射鑄造棒材的表面型態SEM 43 4-3 DSC、玻璃形成能力及結晶活化能等熱性質 44 4-3-1 噴射鑄造棒材的連續升溫DSC 44 4-3-2 噴射鑄造棒材恆溫DSC 46 4-3-3壓縮過後及擠型過後的試片連續升溫DSC 47 4-4 過冷液相區壓縮 48 4-5 擠型 50 第五章 結論 53 參考文獻 56 Table 63 Fig. 72 表目錄 Table 1-1 Fundamental properties and application fields of bulk amorphous and nanocrystalline alloys [66] 63 Table 1-2 The magnetic properties of amorphous alloys [67] 64 Table 1-3 The main applications for bulk amorphous materials [1] 65 Table 2-1 Bond parameters and △Tx in Mg-based BMG [52] 65 Table 2-2 The glass transition temperature (Tg), crystallization temperature (Tx) and liquidus temperature (Tl) for representative BMGs. Most of data were obtained by DSC or/and DTA at a heating rate of 20 K/min [53] 66 Table 2-3 Summarized n value with different growth mechanism in JMA equation [65] 67 Table 3-1 Fundamental data related with Mg, Cu, and Gd 68 Table 4-1 Average constituent of Mg65Cu25Gd10 in Upper, Middle and Bottom parts measured by EDS; every element deviated from nominal composition was smaller than 1 % 68 Table 4-2 Summarized characteristic temperatures and glass forming ability parameters of different parts of injection-cast rod; heating rate = 40 K/min 68 Table 4-3 Summarized characteristic temperatures and glass forming ability parameters of bottom part of injection-cast rod with different heating rate from 10 to 60 K/min 69 Table 4-4 Summary of incubation time obtained from crystallinity vs. time (Fig. 4-10) 69 Table4-5 Summarized the peak stress of stress overshot (σp), the Steady-state flow stress (σs) at true strain is equal to 0.4 and difference between them at 160 ℃ (433 K) 70 Table4-6 Summarized the peak stress of stress overshot (σp), the Steady-state flow stress (σs) at true strain is equal to 0.4 and difference between them at 170 ℃ (443 K) 70 Table4-7 Summarized the peak stress of stress overshot (σp), the Steady-state flow stress (σs) at true strain is equal to 0.4 and difference between them at 180 ℃ (453 K) 71 圖目錄 Fig. 1-1 The short-range order structure of amorphous is different long-range order structure of crystal [1]. 72 Fig. 1-2 XRD pattern of amorphous showing characteristic broaden peak which is different from crystal [1]. 72 Fig. 1-3 Scheme diagram of Splat Quenching Method [7]. 73 Fig. 1-4 Scheme diagram of Two-roller Quenching Process [8]. 73 Fig. 1-5 Scheme diagram of Chill Blcok Melt-Spinning Process (CMBS) [10]. 74 Fig. 1-6 Scheme diagram of Planar Flow Casting Process (PFC) [11]. 74 Fig. 1-7 Scheme diagram of High-Pressure Die Casting [13]. 75 Fig. 1-8 Schematic diagram of Spray-forming process [22-24]. 75 Fig. 1-9 Atoms of amorphous structure arising a small increment strain applied by stress [67]. 76 Fig. 1-10 Relationship between Tensile Strength (σf) or Vickers hardness (Hv) and E (Young’s modulus) for various bulk amorphous alloys [2]. 77 Fig. 1-11 Outer shapes of commercial golf clubs in wood-, iron- and putter-type forms where the face materials are composed of Zr-Al-Ni-Cu bulk amorphous alloys [2]. 78 Fig. 2-1 Mechanisms for the stabilization of supercooled liquid and the high glass-forming ability for the multicomponent alloys which satisfy the three empirical rules [2]. 79 Fig. 2-2 Specific volume of liquid, glass, and crystal versus temperatures [4]. 79 Fig. 2-3 The change of Cp during glass transition temperature [38]. 80 Fig. 2-4 The characteristic temperatures of amorphous materials during Heating and Cooling [93]. 80 Fig. 2-5 The relationship between Rc and Trg [2]. 81 Fig. 2-6 The relationship between Rc and △Tx [2]. 81 Fig. 2-7 New approach for understanding GFA of amorphous materials [55]. 82 Fig. 2-8 Schematic TTT curves showing the effect of Tx measured upon continuous heating for different liquids with similar Tl and Tg; liquid b with higher onset crystallization temperature bTx ( aTx < bTx) shows a lower critical cooling rate bRc (bRc < aRc) [54]. 82 Fig. 2-9 The relationship between Rc and γ[55]. 83 Fig. 2-10 The relationship between Rc and γm [56]. 83 Fig. 2-11 Shear transformation zones in metallic glasses; A two-dimensional schematic of a shear transformation zone in an amorphous metal. A shear displacement occurs to accommodate an applied shear stress τ, with the darker upper atoms moving with respect to the lower atoms [86, 87]. 84 Fig. 2-12 High resolution image showing a blocked crack trying to shear through a nanocrystal (single arrow) or a remaining glassy zone (double arrows) [88]. 84 Fig. 3-1 The Flowchart of this study. 85 Fig. 3-2 Appearances of magnesium, copper and gadolinium. 86 Fig. 3-3 Scheme of Induction furnace for re-melting. 86 Fig. 3-4 Appearances of magnesium and arc-melt Cu-Gd ingot. 87 Fig. 3-5 Scheme of facility of injection casting. 87 Fig. 3-6 Scheme of setup procedure of injection casting. 88 Fig. 3-7 Scheme of Copper mold with rod- shape cavity; Define different parts of as-injection cast rod. 88 Fig. 3-8 Scheme of tool for grinding and polish. 89 Fig. 3-9 Scheme of Differential Scanning Calorimeter, DSC. 89 Fig. 3-10 Appearance of Shimadzu testing machine equipped with tube furnace. 90 Fig. 4-1 Appearance of as-cast Mg65Cu25Gd10 rod; (a) length is about 40 mm and (b) diameter is 6 mm. 91 Fig. 4-2 XRD patterns of different parts of as-cast Mg65Cu25Gd10 rod showing amorphous structure character-broaden peak from 2θ = 30° to 40°. 92 Fig. 4-3 XRD patterns obtained from as-compressed specimen with different strain rate at 160 ℃. 92 Fig. 4-4 The morphology of cross sections of different parts of as-cast Mg65Cu25Gd10 rod under X100; (a) part of Center, (b) part of Middle and (c) part of Outer. 94 Fig. 4-5 DSC traces obtained from different parts of as-cast Mg65Cu25Gd10 rod with a heating rate 40 K/min. 95 Fig. 4-6 DSC traces obtained from bottom part of as-cast Mg65Cu25Gd10 rod with different heating rate from 10 to 60 K/min. 95 Fig. 4-7 The “true” glass transition temperature and “true” onset crystallization temperature obtained from the scattering graph of T vs. Heating rate by linear fitting method. 96 Fig. 4-8 The activation energy for crystallization of as-cast Mg65Cu25Gd10 rod obtained from the scattering graph of ln(Tp2/ψ) v.s 1000/Tp with different heating rate by linear fitting method. 97 Fig. 4-9 DSC traces obtained from as-cast Mg65Cu25Gd10 rod with different isothermal temperature from 433 K to 463 K (heating rate: 40 K/min). 100 Fig. 4-10 The graph of crystallinity v.s time with different isothermal temperature from 433 K to 463 K. 101 Fig. 4-11 DSC traces obtained from as-compressed specimen test with different strain rate at 160 ℃. 101 Fig. 4-12 DSC traces obtained from as-extruded specimen with different holding force; (a) Extrusion ratio = 9 and (b) Extrusion ratio = 36. 102 Fig. 4-13 The true stress vs. true strain plot obtained from EDMed specimen(diameter: 4 mm and height: 8 mm) with different strain rate. 104 Fig. 4-14 strain rate sensitivity (m) obtained from scattering graph of logσf vs. log strain rate by linear fitting method. 105 Fig. 4-15 The morphology of extruded samples under (a) 200 kgf, (b) 600 kgf, (c) 1500 kgf and (d) 2500 kgf of ratio 9 and (e) 200 kgf, (f) 600 kgf, (g) 1500 kgf and (h) 2500 kgf of ratio 36. 107 Fig. 4-16 The Force-Stroke, Stroke-Time and Force-Time curves during back extrusion. 110 Fig. 4-17 The lnσ- lng curve of ratio 9 and 36. 111

    參考文獻
    [1] 吳學陞,新興材料—塊狀非晶質金屬材料,工業材料,149期,pp.154-165,1999年。
    [2] A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., vol.48, pp.279-306, 2000.
    [3] A. L. Greer, Confusion by design, Nature, vol.366, p.303-306, 1993.
    [4] R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd Edition, PWS-Kent Publishing Company, Boston, MA, 1992.
    [5] J. Kramer, Produced the first amorphous metals through vapor deposition, Annln Phys., vol.19, pp.37, 1934.
    [6] A. Brenner, D.E. Couch and E.K. Williams, Electrodeposition of alloys, J. Res, natn, Bur, Stand, vol.44, pp. 109, 1950
    [7] P. Duwez, R. H. Willens and W. Klement, Thermophysical properties of bulk metallic glass-forming liquids, Nature, vol.187, pp.869-870, 1960.
    [8] H. S. Chen and C. E. Miller, A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids, Rev. Sci. Instrum, vol.41, pp.1237-1238, 1970.
    [9] H. S. Chen, Glassy metals, Rep. Prog. Phys., vol.43, pp.353-356, 1980.
    [10] H. H. Liebermann and C. D. Graham, Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions, IEEE Trans. Magn., MAG-12, pp.921-926, 1976.
    [11] Flanders, Mandayam C. Narasimhan, U. S. Patent, No. 4142571, 1979.
    [12] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method, Mater. Trans., JIM, vol.32, pp.609-616, 1991.
    [13] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method, Mater. Trans., JIM, vol.33, pp.937-945, 1992.
    [14] X. Wang, I. Yoshii, A. Inoue, Bulk Amorphous Ni75-xNb5MxP20-yBy (M=Cr, Mo) Alloys with Large Supercooling and High Strength, Mater. Trans., JIM, vol.40, pp.1130-1136, 1999.
    [15] A. Peker and W. L. Johnson, A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., vol.63, pp.2342-2344, 1993.
    [16] H. Men, W. T. Kim, D. H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10−xGdx (x=0, 5 and 10) alloys, J. Non-Cryst. Solids, vol.337, pp.29-35, 2004.
    [17] H. Men and D. H. Kim, Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere, J. Mater. Res., vol.18, pp.1502-1504, 2003.
    [18] K. L. Chapra, Thin Film Phenomena, Mc Graw-Hill, New York, 1969.
    [19] L. I. Naissel and R. Glanz, Handbook of Thin Film Technology, McGraw-Hill, New York, 1970.
    [20] G. N. Jackson, Thin Solid Films, Champman and Hall, pp.209, 1970.
    [21] L. Holland, Vacuum Deposition of Thin Films, John Wiley and Sons Inc. New York, 1958.
    [22] A. H. Lefebvre, Atomization and Sprays, Hemisphere Publishing Corporation, pp.37, 1989.
    [23] P. S. Grant, Prog. Mater. Sci., vol.39, pp.49, 1995.
    [24] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1, J. Non-Cryst. Solid, vol.284, pp.134-138 , 2001.
    [25] J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia, Grain Growth of Nanocrystalline Ni Powders Prepared by Cryomilling, Metall. Mater. Trans., vol.32, pp. 3109-3115, 2001.
    [26] C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough, Preparation of "amorphous" Ni60Nb40 by mechanical alloying , Appl. Phys. Lett., vol.43, pp.1017-1019, 1983.
    [27] L. Schultz, Mater. Sci. Eng. , vol.97, pp.15, 1988.
    [28] J. Eckert, Mechanical alloying of highly processable glassy alloys, Mater. Sci. Eng., vol. A226-A228, pp.363-373, 1997.
    [29] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., vol.39, pp.1221-1227, 1998.
    [30] R. B. Schwarz and W. L. Johnson, Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals, Phys. Rev. Lett.,vol. 51, pp.415-418, 1983.
    [31] A. Sagel, H. Sieber, H. J. Fecht, J. H.Perepezko, Synthesis of an amorphous Zr–Al–Ni–Cu alloy with large supercooled liquid region by cold-rolling of elemental foils, Acta Mater., vol.46, pp.4233-4241, 1998.
    [32] G. Wilde, H. Sieber and J.H. Perepezko, Glass formation versus nanocrystallization in AN Al92Sm8 alloy, Scripta Mater.,vol.40, pp.779-783, 1999.
    [33] J. Bloch, J. Nucl. Mater., vol.6, pp.203-205, 1962.
    [34] J. L. Brimhall and E. P. Simonen, Nuc. Inst. Meth. Phys. Res., B, vol.16, pp. 187, 1986.
    [35] S. Veprek, Z. Iqbal and F. –A. Sarott, A thermodynamic criterion of the crystalline-to-amorphous transition in silicon, Phil. Mag.,vol.B45, pp.137-145, 1982.
    [36] M. H. Cohen and D. Turnbull, Metastability of Amorphous Structures, Nature, vol.203, pp.964, 1964.
    [37] D. Weaire and M. F. Thorpe, Electronic Properties of an Amorphous Solid. I. A Simple Tight-Binding Theory, Phys. Rev. B, vol.4, pp.2508–2520, 1971.
    [38] 戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,China, 1984年。
    [39] H. S. Chen and D. Turnbull, Thermal evidence of a glass transition in gold-silicon-germanium alloy, J. Appl. Phys. Letter, vol.10, pp. p.284-286, 1967.
    [40] J. H. Gibbs and E. A. DiMarzio, Nature of the Glass Transition and Glass State, J. Chem. Phys., vol.28, pp.373-383, 1958.
    [41] M. Hansen, R. P. Elliott and F. A. Shunk, Constitution of Binary Alloys, McGraw-Hill, New York, USA, pp.206, 1958.
    [42] D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys., vol.10, pp.473-488, 1969.
    [43] H. A. Davies, Rapidly Quenched Metals III, The Metals Society, London, pp.1, 1978.
    [44] H. A. Davies, Phys. Chem. Glasses, vol.17, pp.159, 1976.
    [45] D. R. Uhlmann, J. Non-Crystal. Solids. vol.7, pp.337, 1972.
    [46] Z.P. Lu, H. Tan, Y. Li and S.C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Mater. , vol.42, pp.667–673, 2000.
    [47] T. A. Waniuk, J. Schroers and W. L. Johnson, Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys, Appl. Phys. Letter, vol.78, pp.1213-1215, 2001.
    [48] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta. Mater., vol.49, pp.2645-2652, 2001.
    [49] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka , Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys, J. Mater. Res., vol.16, pp.2836-2844, 2001.
    [50] T. D. Shen, Y. He, R. B. Schwarz , Bulk amorphous Pd–Ni–Fe–P alloys: Preparation and characterization, J. Mater. Res., vol.14, pp.2107-2115, 1999.
    [51] B. S. Murty and K. Hono , Formation of Nanocrystalline Particles in Glassy Matrix in Melt-Spun Mg--Cu--Y Based Alloys, Mater. Trans. JIM, vol.41, pp.1538-1541, 2000.
    [52] S. Fang, X. Xiao, L. Xia, W. Li and Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, J. Non-Crystalline Solids, vol.321, pp.120-125, 2003.
    [53] Z.P Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater., vol.50, pp.3501–3512, 2002.
    [54] Z.P Lu and C.T. Liu, Glass Formation Criterion for Various Glass-Forming Systems, Phys. Rev. Lett., vol.91, pp.115505, 2003.
    [55] Z.P Lu and C.T. Liu, A new approach to understanding and measuring glass formation in bulk amorphous materials, Intermetallics, vol.12, pp. 1035-1043, 2004.
    [56] X. H. Du, J. C. Huang, C.T. Liu and Z.P Lu, New criterion of glass forming ability for bulk metallic glasses, J. Appl. Phys, vol.101, pp.086108, 2007.
    [57] H. E. Kissinger, Reaction Kinectics in Differential Thermal Analysis, Anal. Chem, vol.29, pp.1702-1706, 1957.
    [58] K. Matusita, T. Komatsu and R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci., vol.19, p.291-296, 1984.
    [59] C. C. Lin and P. Shen, Non-isothermal site saturation during transformations of Zn2SiO4, J. Solid State Chem., vol.112, p.387-391, 1994.
    [60] W. A. Johnson and K. F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Mining Met. Eng., vol.135, p.315, 1981.
    [61] M. Avrami, Kinetics of Phase Change. I General Theory , J. Chem, Phys., vol.7, pp.1103-1112, 1939.
    [62] M. Avrami, Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, J. Chem, Phys., vol.8, pp.212-224, 1940.
    [63] M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, J. Chem, Phys., vol.9, pp.177-184, 1941.
    [64] D. W. Henderson, Thermal analysis non-isothermal crystallization kinetics in glass forming, J. Non-Cryst. Solids, vol.30, pp.301, 1979.
    [65] J. W. Christian, The Theory of Transformations in Metals and Alloy, 2002.
    [66] A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Mater. Sci. Eng. A., vol.304-306, pp.1-10, 2001.
    [67] 鄭振東編譯,非晶質金屬漫談,建宏出版社,1990年。
    [68] H. Chiriac and N. Lupu, Magnetic properties of (Nd,Ce,Pr)-Fe-(Si,A1) bulk amorphous materials, J. Magn. Magn. Mater. vol.196–197, pp.235-237, 1999.
    [69] K. Hashimoto In: M. Froment, Editor, PASSIVATION OF AMORPHOUS METALS., Passivity of Metals and Semiconductors, Elsevier Science Publishers, Amsterdam ,USA, pp.235, 1983,.
    [70] J. Jayaraj, D.J. Sordelet, D.H. Kim, Y.C. Kim and E. Fleury, Corrosion behaviour of Ni–Zr–Ti–Si–Sn amorphous plasma spray coating, Corros. Sci,. vol.48, pp. 950-964, 2006.
    [71] N.A. Mariano, C.A.C. Souza, J.E. May and S.E. Kuri, Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloysMater. Sci. Eng. A, vol.354, pp.1-5, 2003.
    [72] S. Pang, T. Zhang, K. Asami and A. Inoue, Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys, J. Mater. Res., vol.18, pp. 1652-1658, 2003.
    [73] K. Asami, C. Qin, T. Zhang and A. Inoue, Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass, Mater. Sci. Eng. A, vol.375–377, p. 235-239, 2004.
    [74] T. Shoji and A.Inoue, Hydrogen absorption and desorption behavior of Zr-based amorphous alloys with a large structurally relaxed amorphous region, J. Alloy Compd., vol.292, pp. 275-280, 1999.
    [75] K. Isogai, T. Shoji, H. Kimura and A. Inoue, Increase in Thermal Stability of Mg62Ni33Ca5 Amorphous Alloy by Absorption of Hydrogen, vol.41,pp.1486-1489, 2000.
    [76] A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications, Springer-Verlag, Berlin and Heidelberg, 2001.
    [77] 王俊傑編輯,骨外科手術採用鎂基金屬玻璃,鎂合金產業通訊,pp.13-14,47期,2009年。
    [78] B. Zberg, P. J. Uggowitzer and J. F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Mater., vol.8, pp.887-891, 2009.
    [79] 汪建民等人主編,材料分析,中國材料科學學會,1998年。
    [80] 鮑忠興,劉思謙,近代穿透式電子顯微鏡實務,鼎隆圖書出版公,2008年。
    [81] T. B. Massalski, H. Okamoto, P.R. Subramanian and Linda Kacprzak , Binary alloy phase diagrams, ASM International, Materials Park, Ohio, 1990.
    [82] Standard Test Method for Vickers Hardness of Metallic Materials, ASTM E92-82
    [83] B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1993.
    [84] P. A. Hess, S. J. Poon, G.J. Shiflet and R. H. Dauskardt, Indentation fracture toughness of amorphous steel, J. Mater. Res., vol.20, pp.783-786, 2005.
    [85] P. Feltham, Metal Treatment, vol.23, pp.440, 1956.
    [86] C.A. Schuh, and A.C. Lund, Atomistic basis for the plastic yield criterion of metallic glass, Nature Mater., vol.2, pp. 449-452, 2003.
    [87] A. S. Argon, Plastic deformation in metallic glasses, Acta Metall., vol.27, pp.47–58, 1979.
    [88] K. Hajlaoui , A.R. Yavari, B. Doisneau , A. LeMoulec , W.J. Botta F. , G. Vaughan, A.L. Greer, A. Inoue, W. Zhang and A. Kvick, Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis, Scripta Mater., vol.54, pp.1829-1834, 2006.
    [89] E. S. Park, H. G. Kang and W. T. Kim and D. H. Kim, The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys, J. Non-Cryst. Solids, vol. 279, pp.154-160, 2001.
    [90] E.S. Park, J.Y. Lee and D.H. Kim, Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass, J. Mater. Res., vol. 20, pp. 2379-2385, 2005.
    [91] L.J. Chang , J.S.C. Jang, B.C. Yang, J.C. Huang, Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x = 0-10) amorphous alloys. J. Alloys Comp.,. vol.434-435, pp.221-224, 2007.
    [92] 郭敏郎,Al-RE-Ni噴覆成型塊狀非晶質/奈米晶混合複材與熔融旋淬薄帶之研究,國立成功大學材料科學及工程學系博士論文,2006年。
    [93] 龔榮豪,噴覆成型及熔融旋淬製程製備鎂銅釔塊狀金屬玻璃及其性質之研究,國立成功大學材料科學及工程學系碩士論文,2006年。
    [94] 張耕輔,以噴覆成型法製備非晶質/奈米結晶Mg-Cu-Gd合金及其性質之研究國立成功大學材料科學及工程學系碩士論文,2007年。
    [95] 楊博丞,添加Nd、Ag對Mg-Cu-Gd非晶質合金玻璃形成能力之影響,義守大學材料科學與工程學系碩士論文,2006年。
    [96] 陳海明,鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質,國立中山大學材料科學研究所碩士論文,2006年。
    [97] 張育誠,多元鎂基非晶質金屬玻璃熱機性質與熱可塑功能性之研究,國立中山大學材料科學研究所博士論文,2008年。

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE