| 研究生: |
宣崇堯 Hsuan, Chung-Yao |
|---|---|
| 論文名稱: |
單一分佈複合液滴之噴霧燃燒理論 Theoretical Studies on Monodispersed Compound-Drop Spray Flames |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 複合液滴噴霧 、內部熱傳 、火焰傳播質量流率 、外層燃油質量分率 、噴霧量 |
| 外文關鍵詞: | Compound-drop spray, internal heat transfer, flame propagation mass flux, shell-fuel mass fraction, liquid loading |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採高活化能近似微擾法,以探究單一分佈複合液滴之噴霧火焰理論解,發展初期僅先考量液滴噴霧對火焰產生內部熱傳的影響;噴霧液滴的組成為內核為水,外層包覆正辛烷的複合液滴,其具有特定的初始液滴半徑與外層燃油質量分率。分析的限制為,噴霧液滴與氣態火焰的質量相比須是相對稀薄的且液滴均一分佈於穩定、層流、低速且遠離化學計量比的貧油或富油之預混火焰中,火焰結構與傳播採一維座標且絕熱系統進行分析。
以往藉由高活化能理論,已提升燃油及惰性物質噴霧對火焰影響的瞭解,然而複合液滴噴霧火焰的理論研究卻是由本論文首次提出,與純質噴霧火焰的差異在於複合液滴具有外層辛烷與內核水滴的兩段氣化過程,對貧油火焰而言,複合液滴噴霧可以由外層辛烷燃燒而對系統提供熱獲得,同時也會因液滴蒸發吸熱而造成熱損失;對富油火焰而言,雖然不會再產生熱獲得,但是由於水與辛烷的潛熱性質差異,液滴的外層燃油質量分率仍然會在噴霧火焰的特性上扮演重要參數。在本論文中,複合液滴噴霧依其外層燃油和內核水滴的氣化區間與火焰的相對位置可被區分為完全預蒸發(CPB)、外層燃油預蒸發(SPB)、以及外層燃油部份預蒸發(SPP)等三種不同之噴霧燃燒模式;換言之,複合液滴噴霧之模式是可以藉由控制液滴的初始尺寸及外層燃油質量分率來達成。此外,兩種臨界模式((CPB)c:液滴恰好在火焰位置蒸發完畢,與(SPB)c:外層燃油恰好在火焰位置蒸發完畢)的複合液滴噴霧或許是未來在應用上的最佳條件,而且為達到符合臨界模式其所對應的臨界參數需相互配合,因此相對有趣且值得探討。
探討過程中,經由將外層辛烷與內核水滴的兩段氣化區間以圖形繪出後,便能清楚顯示複合液滴噴霧之燃燒模式,配合火焰特性的變化,更能體會出由噴霧所造成的內部熱傳,其發生在火焰上游與下游時,對預混火焰產生的影響程度差異。在本文中所包含的參數有外層燃油質量分率( )、液滴的初始尺寸( 或 )、以及噴霧量( ),並分別對貧油與富油火焰進行分析;火焰特性乃是以火焰傳播質量流率( )來表示,其可代表受噴霧影響,火焰強度是增強( >1)、減弱( <1)或甚至造成火焰的熄滅;火焰熄滅現象的發生,則是出現在S型曲線的上轉折點。
最後,經由分析結果之觀察,造成火焰熄滅之複合液滴噴霧的必要條件有二:噴霧必須對火焰造成抑制強度的負效應,以及液滴必須在火焰位置產生夠大的熱損失率。對貧油火焰而言,當 μm或 的情況下,複合液滴噴霧將無法造成火焰的熄滅;對富油火焰而言,火焰熄滅可能發生於SPB、SPP或(SPB)c三種噴霧模式下,本論文最後並試著以圖表示,複合液滴噴霧所將造成火焰熄滅的極限條件。
A monodispersed compound-drop spray flame is investigated by large-activation-energy asymptotic analysis. The present study provides a qualitative insight into the internal heat transfer of a compound-drop spray on a flame. The composition of a compound drop is a water core encased by a fuel shell specified by an initial radius and a shell-fuel mass fraction. The spray shall be dilute and monodispersed in a lean or rich premixed flame which is steady, laminar, low-speed, and off-stomichiometric. The flame structure and propagation is analyzed in an adiabatic one-dimensional coordinate system.
The understanding of fuel or inert spray flames has been improved through the large-activation-energy theoretical works. However, the compound-drop spray flame asymptotic analysis is first developed in this thesis. The difference from a single-component spray is that the compound drop has two gasification processes, namely the shell fuel and the core water. For a lean flame, the compound-drop spray can provide heat gain at the reaction zone and heat loss in the vaporization region. For a rich flame, although the shell fuel and the core water both induce heat loss, the difference in their latent heat makes the shell-fuel mass fraction of the compound drop to play an important role in the spray flame behavior. In this thesis, the compound-drop spray has been divided into the completely pre-vaporized burning (CPB), the shell pre-vaporized burning (SPB) and the shell partially pre-vaporized (SPP) modes by the relative position of gasification zones of the shell fuel and the core water to the flame sheet. In other words, the three spray modes are determined by the initial size and the shell-fuel mass fraction of the compound drops. According to this classification, two critical conditions of CPB and SPB are defined. The critical values of initial radius and shell-fuel mass fraction are interestingly important to be investigated.
Through the illustration of the figures of the shell and core gasification regions, the spray modes can be recognized clearly and a better understanding can be gained that the downstream internal heat transfer has a weaker effect on the flame than the upstream one. The parameters of this compound-drop spray investigation are the shell-fuel mass fraction ( ), the initial radius ( ) or the water-core radius ( ), and the liquid loading ( ). They are analyzed in either a lean or a rich flame. The flame characteristics are represented by the flame propagation mass flux ( ) which indicates that the effect on the flame intensity is enhancement ( >1), suppression ( <1), or extinction, which occurs at the upper turning point of the S-shaped flame propagation mass flux curve.
Furthermore, the necessary conditions of extinction for a compound-drop spray flame are that the spray causes a negative effect and provides a sufficiently heat loss rate at the downstream side of the flame sheet. For a lean spray flame, if μm or , the spray is unable to quench the flame. For a rich spray flame, three extinction patterns were observed; they occur in SPP, SPB or at the critical SPB mode, but not in CPB. The extinction maps of the compound-drop sprays are plotted to demarcate the patterns; also to indicate the limitations and corresponding conditions of flame extinction.
1. Richard, L., The Origin of Humankind, BasicBooks, New York, 1994.
2. Liňán A. and Williams F. A., Fundamental Aspects of Combustion, Oxford University Press, New York, 1993.
3. Law, C. K., Combustion Physics, Cambridge University press, New York, 2006.
4. Lin, T. H., Law, C. K., and Chung, S. H., “Theory of laminar flame propagation in off-stoichiometric dilute sprays,” Int. J. Heat Mass Tran., Vol. 31(5), pp.1023-1034, 1988.
5. Huang, C. L., Chiu, C. P., and Lin, T. H., “The influence of liquid fuel on the flame propagation of dilute sprays in non-conserved systems,” J. Chin. Soc. Mech. Eng., Vol. 10(5), pp. 333-343, 1989.
6. Liu, C. C. and Lin, T. H., “The interaction between external and internal heat losses on the flame extinction of dilute sprays,” Combust. Flame, Vol. 85, pp. 468-478, 1991.
7. Hou, S. S,, Liu, C. C., and Lin, T. H., “The influence of external heat transfer on flame extinction of dilute sprays,” Int. J. Heat Mass Tran., Vol. 36(7), pp. 1867-1874 , 1993.
8. Hou, S. S. and Tseng, C. H., “The influence of downstream external heat loss on extinction of dilute spray flames,” Int. Comm. Heat Mass Tran., Vol. 26(5), pp. 705-715, 1999.
9. Hou, S. S. and Lin, T. H., “A theory on excess enthalpy spray flame,” Atomization Sprays, Vol. 9, pp. 355-369, 1999.
10. Liu, C. C. and Lin, T. H., “The influence of upstream prevaporization on flame extinction of one-dimensional dilute sprays in aerothermodynamics in combustor, editors Richard Lee, S. L., Whitelaw, J. H., and Wung, T. S., Springer-Verlag, pp. 197-211, 1992.
11. Hou, S. S., “The interaction between upstream and downstream external heat transfers on the burning and extinction of dilute spray flames,” JSME Int. J., Vol. 42(4), pp. 691-698, 1999.
12. Hou, S. S., “The quenching of spray flames by stretch and heat loss,” JSME Int. J., Series B, Vol. 46(2), pp. 287-298, 2003.
13. Liu, C. C., Lin, T. H., and Tien, J. H., “Extinction theory of stretched premixed flames by inert sprays,” Combust. Sci. Technol., Vol. 91, pp. 309-327, 1993.
14. Hou, S. S. and Lin, T. H., “Extinction of stretched spray flames with nonunity Lewis numbers in a stagnation-point flow,” Proc. Combust. Inst., Vol. 27, pp. 2009-2015, 1998.
15. Hou, S. S. and Lin, T. H., “Effects of internal heat transfer and preferential diffusion on stretched spray flames,” Int. J. Heat Mass Tran., Vol. 44(23), pp. 4391-4400, 2001.
16. Hou, S. S., “The interaction between internal heat loss and external heat loss on the extinction of stretched spray flames with nonunity Lewis number,” Int. J. Heat Mass Tran., Vol. 46(2), pp. 311-322, 2003.
17. Hou, S. S., “The quenching of spray flames by stretch and heat loss,” JSME Int. J., Vol. 46(2), pp. 287-298, 2003.
18. Lin, J. C. and Lin, T. H., “Influence of water spray on normal and inverted Bunsen flame,” Combust. Sci. Technol., Vol. 175, pp. 1263-1291, 2003.
19. Lin, J. C., Hou, S. S., and Lin, T. H., “A theoretical study on Bunsen spray flames,” Int. J. Heat Mass Tran., Vol. 46 (6), pp. 963-971, 2003.
20. Hou, S. S. and Lin, J. C., “The influence of preferential diffusion and stretch on the burning intensity of a curved flame front with fuel spray,” Int. J. Heat Mass Tran., Vol. 46(26), pp. 5073-5085, 2003.
21. Lin, J. C. and Hou, S. S., “Analysis of non-adiabatic excess enthalpy spray flames,” Energy Convers. Manage., Vol. 46, pp.2873-2891, 2005.
22. Tsai, C. H., Hou, S. S., and Lin, T. H., “Influence of inert sprays on extinction premixed flames propagating in a duct with varying cross-sectional area,” Atomization Sprays, Vol. 15, pp.545-565, 2005.
23. Tsai, C. H., Hou, S. S., and Lin, T. H., “Spray flames in a one-dimensional duct of varying cross sectional area,” Int. J. Heat Mass Tran., Vol. 45(11), pp. 2250-2259, 2005.
24. Tsai, C. H., Hou, S. S, and Lin, T. H., “A spray flame propagating in a nonadiabatic duct with varying cross-sectional area,” Combust. Flame, Vol. 144, pp. 277-288, 2006.
25. Hou, S. S. and Lin, T. H., “Extinction theory of spray premixed flames,” 5th Asia-Pacific Conference on Combustion, The University of Adelaide, Adelaide, Australia 18-20 July 2005.
26. Chiu, S.L. and Lin, T. H., “An experiment on the dynamics of a compound drop impinging on a hot surface,” Phys. Fluids, Vol. 17, pp.122103, 2005.
27. Sanjay, Singh, O., and Prasad, B.N., “Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle,” Appl. Therm. Eng., Vol. 28, pp. 2315-2326, 2008.
28. Wang, T. and Li, X. C., “Mist film cooling simulation at gas turbine operating conditions,” Int. J. Heat Mass Tran., Vol. 51, pp. 5305-5317, 2008.
29. Modak, A. U., Abbud-Madrid, A., Delplanque, J. P., and Kee, R. J., “The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames,” Combust. Flame, Vol. 144, pp. 103-111, 2006.
30. Chelliah, H. K., “Flame inhibition/suppression by water mist: Droplet size/surface area, flame structure, and flow residence time effects,” Proc. Combust. Inst., Vol. 31, pp. 2711-2719, 2007.
31. Kadota, T. and Yamasaki, H., “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci., Vol. 28, pp. 385-404, 2002.
32. Wang, C. H. and Chen, J. T., “An experimental investigation of the burning characteristics of water-oil emulsions,” Int. Comm. Heat Mass Tran. 23(6), pp. 823-834, 1996.
33. Tarlet, D., Bellettre, J., Tazerout, M., and Rahmouni, C., “A numerical comparison of spray combustion between raw and water-in-oil emulsified fuel,” Int. J Spray Combust. Dynamics, Vol. 2(1), pp. 1-20, 2010.
34. Watanabe, H., Matsushita, Y., Aoki, H., and Miura, T., “ Numerical simulation of emulsified fuel spray combustion with puffing and micro-explosion,” Combust. Flame, Vol. 157, pp. 839-852, 2010.
35. Wang, C. H., Pan, K. L. Huang, W. C., Wen, H. C., Yang, J.Y., and Law, C.K. “Effects of fuel properties on the burning characteristics of collision-merged alkane/water droplets,” Exp. Therm. Fluid Sci., Vol. 32, pp. 1049-1058, 2008.
36. Wang, C. H., Fu, S. Y., Kung, L. J., and Law, C. K., “Combustion and microexplosion of collision-merged methanol/alkane droplets,” Proc. Combust. Inst., Vol. 30, pp. 1965-1972, 2005.
37. Hsieh, W. D., Lin, S. Y., Chen, R. H., and Lin, T. H., “Burning behavior of gas-in-oil compound drops,” Combust. Sci. Technol., Vol. 183, pp. 51-61, 2011.
38. Williams, A., Combustion of Liquid Fuel Sprays, Butterworth, Stoneham, MA (United States), 1990.
39. Faeth, G. M., “Current status of droplet and liquid combustion,” Prog. Energy Combust. Sci., Vol. 3, pp. 191-224. 1977.
40. Thring, M. W., The Science of Flame and Furnaces, Chapman and Hall, London, 1962.
41. Williams, F. A., Combustion Theory, 2nd Edition, Benjamin Cummings, New York, 1985.
42. Law, C. K., “Unsteady droplet combustion with droplet heating,” Combust. Flame, Vol. 26, pp. 17-22, 1976.
43. Sirignano, W. A., Fluid Dynamics and Transport of Droplets and Spray. Cambridge, 1999.
44. Boretti, A., “Stoichiometric H2ICEs with water injection,” Int. J. Hydrogen Energ., Vol. 36, pp. 4469-4473, 2011.
45. Law, C.K. and Law, H. K., “A d2-law for multicomponent droplet vaporization and combustion,” AIAA J., Vol. 20, pp.522-527, 1982.
46. Tarlet, D., Bellettre, J., Tazerout, M., and Rahmouni, C., “Prediction of microexplosion delay of emulsified fuel droplets,” Int. J. Therm. Sci., Vol. 48, pp. 449-460, 2009.
47. Prandtl, L., “On fluid motion with very small fraction,’ Proc. 3rd Int. Math. Congr., Heidelberg, 1904.
48. Zel’dovich, Y. B. and Frank-Kamenetskii, D. A., “Thermal theory of flame propagation,” Zhur Fiz. Khim., Vol. 12, pp.100, 1938.
49. Bush, W. B. and Fendell, “Asymptotic analysis of laminar flame propagation for general Lewis number,” Combust. Sci. Technol., Vol. 1, pp. 421-428, 1970.
50. Sivashinsky, G. I., “On the Structure and Stability of Laminar Flames,” Annu. Rev. Fluid Mech., Vol. 15, pp.179-204, 1983.
51. Clavin, P., “Dynamic behavior of premixed flame fronts in laminar and turbulent flows,” Prog. Energ. Combust. Sci., Vol. 11, pp. 1-59, 1985.
52. Law, C. K. and Sung, C. J., “Structure, aerodynamics, and geometry of premixed flames,” Prog. Energ. Combust. Sci., Vol. 26, pp. 459-505, 2000.
53. Ju, Y., Maruta, K., and Niioka, T., “Combustion Limits,” Appl. Mech. Rev., Vol. 54(3), pp. 257-277, 2001.
54. Buckmaster, J. D. and Ludford, G. S. S., Theory of Laminar Flames, Cambridge University Press, 1982.
55. Spalding, D. B., “A theory of inflammability limits and flame-quenching,” P. Roy. Soc., London, A240, pp. 83-100, 1957.
56. Mitani, T., “A Flame inhibition theory by inert dust and spray,” Combust. Flame, Vol. 43, pp. 243-253, 1981.
57. Nicoli, C., Haldenwang, P., and Suard, S., “Effects of substituting fuel spray for fuel gas on flame stability in lean premixtures,” Combust. Flame, Vol. 149, pp. 295-313, 2007.
58. Nicoli, C., Haldenwang, P., and Suard, S., “Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number,” Combust. Flame, Vol. 143, pp. 299-312, 2005.
59. Dvorjetski, A. and Greenberg, J. B., “Theoretical analysis of polydisperse water spray extinction of opposed flow diffusion flames,” Fire Safety J., Vol. 39, pp. 309-326, 2004.
60. Dvorjetski, A. and Greenberg, J. B., “Analysis of extinction of counterflow polydisperse spray diffusion flame by a polydisperse water spray,” Proc. Combust. Inst., Vol. 29, pp. 385-392, 2002.
61. Dvorjetski, A. and Greenberg, J. B., “Influence of non-unity Lewis numbers and loading on the extinction of counter-flow spray diffusion flames,” Proc. Combust. Inst., Vol. 28, pp. 1047-1054, 2000.
62. Greenberg, J. B., “Finite-rate evaporation and droplet drag effects in spherical flame front propagation through a liquid fuel mist,” Combust. Flame, Vol. 148, pp. 187-197, 2007.
63. Blouquin, R. and Joulin, G., “On the quenching of premixed flames by water sprays: influences of radiation and polydispersity,” Proc. Combust. Inst., Vol. 27, pp. 2829-2837, 1998.
64. Blouquin, R. and Joulin, G., “Propagation limits of dust/air flames diluted by additions of inert solid particles, Proc. Combust. Inst., Vol. 26, pp. 1565-1570, 1996.
65. Ju, Y. and Law, C. K., “Dynamics and extinction of non-adiabatic particle-laden premixed flames,” Proc. Combust. Inst., Vol. 28, pp. 2913-2920, 2000.
66. Sohrab, S. H. and Law, C. K., “Extinction of premixed Flames by stretch and radiative loss,” Int. J. Heat Mass Trans., Vol. 27, pp. 291-300, 1984.
67. Ju, Y., Masuya, G., Liu, F. H., Hattori, Y., and Riechelmann, D., “Asymptotic analysis of radiation extinction of stretched premixed Flames,” Int. J. Heat Mass Trans., Vol. 43, pp. 231-239, 2000.
68. Chen, Z., Burke, M. P., and Ju, Y., “Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames,” Combust. Theor. Model., Vol. 13, No. 2, pp. 343-364, 2009.
69. Chen, Z., Burke, M. P., and Ju, Y., “Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames,” Proc. Combust. Inst., Vol. 32, pp. 1253-1260, 2009.
70. Pereira, F. M., Oliveira, A. A. M., and Fachini, F. F., “Asymptotic analysis of stationary adiabatic premixed flames in porous inert media,” Combust. Flame, Vol. 156, pp. 152-165, 2009.
71. Chelliah, H. K., Lazzarini, A. K., Wanigarathne, P. C., and Linteris, G. T., “Inhibition of premixed and non-premixed flames with fine droplets of water and solutions, Proc. Combust. Inst., Vol. 29, pp. 369-376, 2002.
72. Yang, W. and Kee, R. J., “The effect of monodispersed water mists on the structure, burning velocity, and extinction behavior of freely propagating, stoichiometric, premixed, methane-air flames,” Combust. Flame, Vol. 130, pp. 322-335, 2002.
73. Davis, S. G. and Law, C. K., “Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames,” Proc. Combust. Inst., Vol. 27, pp. 521-527, 1998.
74. Jager, B. D., Kok, J. B. W., and Skevis, G., “The effects of water addition on pollutant formation from LPP gas turbine combustors,” Proc. Combust. Inst., Vol. 31, pp. 3123-3130, 2007.
75. Rachner, M., Becker, J., Hassa, C., and Doerr, T., “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerospace Sci. Technol., Vol. 6, pp. 495-506, 2002.
76. Liedtke, O. and Schulz, A., “Development of a new lean burning combustor with fuel film evaporation for a micro gas turbine,” Exp. Therm. Fluid Sci., Vol. 27, pp. 363-369, 2003.
77. Lin, T. H. and Sheu, Y.Y., “Theory of laminar flame propagation in near-stoichiometric dilute sprays,” Combust. Flame, Vol. 84, pp. 333-342, 1991.
校內:2017-02-15公開