| 研究生: |
林勝峰 Lin, Sheng-Feng |
|---|---|
| 論文名稱: |
Manganese-Silicate與氫氧化鎳孔洞性材料之合成與應用之研究 A Study on Synthesis and applications of Manganese-Silicate and Nickel Hydroxide Mesoporous Materials |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | Mn-silicate複合材料 、燃煤煙氣 、氫氧化鎳 、N2O降解 |
| 外文關鍵詞: | Manganese-silicate, flue gas, Nickel Hydroxide, Hydrothermal Method, N2O decomposition |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以兩大部分為研究主題,包含金屬氫氧化物或氧化物與氧化矽之間的結合,希望透過簡單且方便的合成方法,而得到具有高表面積且結構特殊的matal-silicate中孔洞複合材料。另一部份則是透過簡單的水熱過程而得到具有特殊形狀的金屬氫氧化物。致力於研究特殊結構材料的合成方法、孔洞大小與孔洞性質之間的調控,並利用製備而得的材料找尋其相關應用性。
(1) 無機模板法製作中孔洞Mn-silicate複合材料
本實驗利用不同鹼源合成出具有不同結構的氫氧化錳,透過於高鹼性環境下與實驗室合成中孔洞氧化矽材料進行水熱反應,使氫氧化錳與氧化矽進行溶解再重組的反應。反應進行時,會因為作用力的不同,使得作為模板的成分有所不同,利用碳酸鈉為鹼源合成得到氫氧化錳,其結構為顆粒狀奈米粒子,進行重組時,氧化矽會以氫氧化錳奈米粒子為模板重組成泡泡狀結構;而氫氧化鈉做為鹼源合成得到氧化錳,其結構具有六角薄片與長條結構,在重組的過程中,氧化矽可以六角薄片或長條狀結構為模板進行重組,而氧化錳也可以氧化矽球為模板進行重組,因而得到三種不同結構的Mn-silicate複合材料。材料在合成過程中,若經由水量的調控,Mn/SiO2比例的調控等,而可以得到具有更高表面積的複合材料,Mn/SiO2比為1/2時,可以得到表面積接近600 m2/g的複合材料。
在反應過程中發現,氧化矽的溶解速率對形成Mn-silicate複合材料的性質有很大的影響,因此利用矽酸鈉作為氧化矽的來源進行研究,發現利用矽酸鈉來進行同樣的反應,也可以得到相同的結構,而且反應時間大幅縮短,更可使Mn-silicate複合材料的合成步驟簡化,除此之外,利用相同概念,使用含有氧化矽成分的稻殼來進行反應,同樣也可以得到具有高表面積的Mn-silicate複合材料。
目前為止的成果發現,Mn-silicate孔洞性複合材料因為其表面積很高,在進行催化與吸附等反應都具有相當好的活性,對於燃煤煙氣(flue gas)中汞蒸氣的吸附更是具有相當好的結果,因此,Mn-silicate複合材料對於催化觸媒、工業之有毒氣體吸附等富有相當的應用潛力。
(2) 水熱法合成中孔洞Ni(OH)2材料
透過水熱法,可簡單的以一步驟反應即可得到具有特殊結構的金屬氫氧化物或氧化物材料。本實驗使用硝酸鎳為鎳離子前驅物,P123做為結構導向試劑,加入尿素提供鹼性來源,透過使用壓力鍋(autoclave)進行水熱反應,而得到具有毛邊的六角片狀或球狀結構的氫氧化鎳,表面積可達220 m2/g以上。透過水熱時間、反應物濃度、尿素含量的改變,可以使得材料的性質有所改變。後續研究中發現不加入結構導向試劑同樣也可以獲得球狀結構,表面積更得到大幅的提升。將產物於300oC下鍛燒,即可得到維持結構且表面積仍維持的氧化鎳奈米球。
將合成所得的氧化鎳奈米球進行N2O的降解反應,發現具有高表面積海膽球狀的氧化鎳結構對於N2O的去除具有相當的活性,因此對於工業上N2O的去除具有相當的應用潛力。
Part 1. Synthesis of Mesoporous Manganese-silicate by Inorganic Template Method
Manganese-silicate of high surface area and large porosity can be easy obtained from a hydrothermal treatment on a mixture of Mn(OH)2 or Mn3O4 precipitates and mesoporous silica under alkaline conditions. For the preparation of Mn(OH)2 precipitates, different base sources results in different Mn(OH)2(S) composites. Using Na2CO3(aq), the Mn(OH)2 nanoparticles are generated, which can be used as inorganic template to reconstruct with mesoporous silica to form manganese-silicate nanofoam structure. In contrast, using NaOH(aq) as base source got the Mn3O4 hexagonal platelets or strips. After reconstruction with silicate from mesoporous silica, the mesoporous manganese-silicates in hexagonal platelets, strips or spheres were synthesized instead.
To achieve a more convenient and cheap method for the synthesis of manganese-silicate, we used sodium silicate or rice husk (with around 12 wt.% silica) as silica source to replace the mesoporous silica. The results demonstrate that the mesostructured manganese-silicate can also be prepared by using different silica sources. These resulted mesostructures usually have large BET surface areas of 400-600 m2/g and pore size around 4.0–5.0 nm. Further investigation of their mercury sorption ability shows that the manganese-silicates are indeed good candidates as absorbents for the sorption of mercury in flue gas. This synthetic process can be extended to prepare other metal-silicate structures. With different metal oxide, the mesoporous metal-silicates can have potential applications in adsorption, catalysis, battery materials and gas sensors.
Part 2. Synthesis of Mesoporous Nickel Hydroxide by Hydrothermal Method
Surfactant-templating method has been widely used to prepare the mesostructural inorganics, especially for silicas. Because of fast condensation rate and high crystallization energy, mesostructural metal oxides templated by surfactant were seldom reported. Herein, we provided a facile hydrothermal method to synthesize mesostructural Ni(OH)2 by using Pluronic P123, F127 and polyethylene oxides as template. Changing reaction temperature, alkaline source or surfactant can prepare the mesostructural Ni(OH)2 in different morphologies (e.g. nanosheets or urchin-like spheres). The mesostructural Ni(OH)2 products have high surface areas about 230 m2/g. We found that the urchin-like spheres can also be synthesized without adding surfactants. Moreover, the prepared mesostructural Ni(OH)2 samples possesses relatively larger surface areas about 350 m2/g but lower crystallinity.
The NiO hierarchical architecture remains their original morphologies after calcination. The as-obtained urchin-like NiO spheres demonstrate a high catalytic activity toward N2O decomposition. The N2O conversion percentage increases with the increase of temperature, and a 100% N2O conversion was attended at temperature of around 400oC. In brief, with a well control on the reaction composition, mesoporous NiO catalysts can be easily synthesized and the mesostructural NiO displays great potential in environmental pollutants cleanup.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J Am Chem Soc, 1992, 114, 10834-10843.
3. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
4. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
5. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
6. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
7. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935
8. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
9. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
10. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-+.
11. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
12. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
13. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
14. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-+.
15. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
16. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
17. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
18. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
19. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
20. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
21. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
22. S. Mann, Angew Chem Int Edit, 2000, 39, 3393-3406.
23. N. Kroger, R. Deutzmann and M. Sumper, Science, 1999, 286, 1129-1132.
24. E. G. Vrieling, T. P. M. Beelen, R. A. van Santen and W. W. C. Gieskes, Angew Chem Int Edit, 2002, 41, 1543-1546.
25. C. Fox, Cosmet Toiletries, 1984, 99, 28-31.
26. [Anon], Nature, 1970, 228, 321-&.
27. B. Sarkar and P. Alexandridis, J Phys Chem B, 2010, 114, 4485-4494.
28. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
29. D. Y. C. Chan, D. J. Mitchell, B. W. Ninham and B. A. Pailthorpe, J Chem Soc Farad T 2, 1980, 76, 776-784.
30. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
31. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
32. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
33. 馬振基 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003.
34. R. I. Walton, Chem. Soc. Rev. 2002, 31, 230.
35. D. J. Watson, C. A. Randall, Am. Ceram. Soc. Inc. 1988, 1, 154.
36. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283.
37. Y. W. Jun, J. H. Lee, J. S. Choi, J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795.
38. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan, Chem. Mater. 2002, 14, 4172.
39. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
40. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science. 2000, 289, 751.
41. R. L. Penn, J. F. Banfield, Science. 1998, 281, 969.
42. R. L. Penn, J. F. Banfield, Geochim, Cosmochim, Acta, 1999, 63, 1549.
43. K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, J. Mater.Chem. 2004, 14, 2575.
44. C. H. Gu, V. Y. Jr, J.W. Grant, J. Pharm. Sci. 2001, 90, 1878.
45. J. H. ter Horst, R. M. Geertman, G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277.
46. X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
47. B. M. Wen, C. Y. Liu, Y. Liu, New J. Chem. 2005, 29, 969.
48. B. Cheng, E. T. Samulski, Chem. Commun. 2004, 986.
49. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, Y. Li,Cryst. Growth.Des. 2005, 5, 1801.
50. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology, 2004, 15, 622.
51. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. Wong,Chem. Mater. 2000, 12, 2268.
52. J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Adv. Mater. 2005, 17, 1873.
53. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
54. X. Peng, Adv. Mater. 2003, 15, 459.
55. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206.
56. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
57. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
58. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
59. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
60. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
61. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
62. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
63. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
64. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
65. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
66. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
67. D. R. Rolison, Science, 2003, 299, 1698-1701.
68. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
69. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
70. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
71. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
72. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
73. L. M. Xiong, E. H. Sekiya, S. Wada and K. Saito, Acs Appl Mater Inter, 2009, 1, 2509-2518.
74. Porcella, D. EPRI J. 1990, April/May, 46-49.
75. Sloss, L. L. Mercury Emissions and Effects-The Role of Coal,IEAPER/19.
76. Amendments to the Clean Air Act. U.S. Public Law 101-549.
77. Bragg, L. J.; Oman, J. K.; Tewalt, S.; Oman, C. L.; Rega, N. H.;Washington, P. M.; Finkelman, R. B. Coal quality (COALQUAL)database: version 1.3; U. S. Geological Survey, Open-File Report 94-205, 1994; 35Mb CD-ROM.
78. Gao Hongliang,Zhou Jinsong,Luo Zhongyang,et al.Effect of sulfur dioxide on the speciation of mercury in flue gases[J].Acta Scientiae Circumstantiae,2004,24(2):204-209(in Chinese).
79. Gao Hongliang,Zhou Jinsong,Luo Zhongyang,et al.Effect of NO on the speciation of mercury in coal-fired flue gases[J].Journal of Engineering Thermophysics,2004,25(6):1057-1060(in Chinese).
80. Yan T Y.A novel process for hg removal from gases[J].Ind. Eng.Chem. Res.,1994,33(12):3010-3014.
81. Klimov, V. I. Annu. ReV. Phys. Chem. 2007, 58, 635.
82. Li, L.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349.
83. Kovtyuklhova, N. I.; Mallouk, T. E. Chem. Eur. J. 2002, 8, 4354.
84. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.;Lieber, C. M. Science 2000, 289, 94.
85. Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
86. Ovshinsky, S. R.; Fetcenko, M. A.; Ross, J. Science 1993, 260,176.
87. Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.;Figlarz, M.; Fievet, F. J. Power Sources 1982, 8, 229.
88. Indria L, Dixit M and Kamath P V 1994 J. Power Sources 52 93
89. Barnard R, Randell C F and Tye F L 1980 J. Appl. Electrochem.10 109
90. Faure C, Delmas C and Willmann P 1991 J. Power Sources 36 497
91. Dirksen, J. A.; Duval, K.; Ring, T. A. Sens. Actuators, B 2001, 80, 106.
92. Niklasson, G. A.; Granqvist, C. G. J. Mater. Chem. 2007, 17, 127.
93. Kawano, M.; Yoshida, H.; Hashino, K.; Ijichi, H.; Suda, S.; Kawahara, K.; Inagaki, T. J. Power Sources 2007, 173, 45.
94. Wang, D.; Xu, R.; Wang, X.; Li, Y. Nanotechnology 2006, 17, 979.
95. Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A. V.; Bruce, P. G. J. Am. Chem. Soc. 2008, 130, 5262.
96. Salgueirin˜o-Maceira, V.; Correa-Duarte, M. A.; Ban˜obre-Lo´pez, M.; Grzelczak, M.; Farle, M.; Liz-Marza´n, L. M.; Rivas, J. AdV. Funct. Mater. 2008, 18, 616.
97. Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y. B.; Bath, U. Nanotechnology 2008, 19, 295304.
98. He, J. J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1999, 103, 8940.
99. Morandeira, A.; Fortage, J.; Edvinsson, T.; Pleux, L. L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hammarstro¨m, L.; Odobel, F. J. Phys. Chem. C 2008, 112, 1721.
100. Liu B H, Yu S H, Chen S F and Wu C Y 2006 J. Phys. Chem. B 110 4039
101. Matsui K, Kyotani T and Tomita A 2002 Adv. Mater. 14 1216
102. Tan Y W, Srinivasan S and Choi K S 2005 J. Am. Chem. Soc. 127 3596
103. Liang Z H, Zhu Y J and Hu X L 2004 J. Phys. Chem. B 108 3488
104. Chen D L and Gao L 2005 Chem. Phys. Lett. 405 159
105. Liu X H, Qiu G Z,Wang Z and Li X G 2005 Nanotechnology 16 1400
106. Wang D B, Song C X, Hu Z S and Fu X 2005 J. Phys. Chem. B 109 1125
107. Yang D N, Wang R M, Zhang J and Liu Z F 2004 J. Phys. Chem. B 108 7531
108. Coudun C and Hochepied J F 2005 J. Phys. Chem. B 109 6069
109. M.H. Thiemens, W.C. Trogler, Science 251 (1991) 932.
110. J.P. Ramı´rez, F. Kapteijn, K. Scho¨ffel, J.A. Moulijn, Appl. Catal. B 44 (2003) 117.
111. W.C. Trogler, Coord. Chem. Rev. 187 (1999) 303.
112. A. Shimizu, K. Tanaka, M. Fujimori, Chemosphere-Global Change Sci. 2 (2000) 425.
113. K. Doi, Y.Y. Wu, R. Takeda, A. Matsunami, N. Arai, T. Tagawa, S. Goto, Appl. Catal. B 35 (2001) 43.
114. L. Yan, X. Zhang, T. Ren, H. Zhang, X. Wang, J. Suo, Chem. Comm. (2002) 860.
115. E.R.S. Winter, J. Catal. 34 (1974) 431.
116. S. Kannan, C.S. Swamy, Catal. Today 53 (1999) 725.
117. L. Yan, T. Ren, X.Wang, Q. Gao, D. Ji, J. Suo, Catal. Comm. 4 (2003) 505.
118. J.P. Ramı´rez, F. Kapteijn, G. Mul, X. Xu, J.A. Moulijn, Catal. Today 76 (2002) 55.
119. J.P. Ramı´rez, F. Kapteijn, Appl. Catal. B 47 (2004) 177.
120. U. Chellam, Z.P. Xu, H.C. Zeng, Low-temperature synthesis of MgxCo1−xCo2O4 spinel catalysts for N2O decomposition, Chem. Mater. 12 (2000) 650–658.
121. L. Yan, T. Ren, X.L. Wang, D. Ji, J.S. Suo, Catalytic decomposition of N2O over MxCo1−xCo2O4 (M= Ni, Mg) spinel oxides, Appl. Catal. B 45 (2003) 85–90.
校內:2015-07-09公開