| 研究生: |
林宜蒨 Lin, Yi-chien |
|---|---|
| 論文名稱: |
新型非球面光纖透鏡之準分子雷射加工及其光學應用 A Novel Method for The Fabrication of Fiber Lens and Its Application |
| 指導教授: |
李永春
Lee, Yung-chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 非球面微透鏡 、單模光纖 、微光學元件 、準分子雷射加工 、光纖透鏡 |
| 外文關鍵詞: | Single Mode Fiber, Excimer Laser Micromachining, Micro-Optic Device, Aspheric Microlens, Fiber Lens |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將利用「準分子雷射行星式加工法」,製作軸對稱之三維微結構,並應用此技術於高分子材料上,製作出折射式與非球面之光學微透鏡,再將此微透鏡與單模光纖黏合,完成一整合式的光纖透。本文主要研究二種光纖透鏡:一是聚焦式光纖透鏡,目的是使光纖導出的光直接聚焦,並利用非球面之光學設計與加工能力,使聚焦光點的大小逼近光學繞射極限;二是準直式光纖透鏡,目標是得到平行與準直的光束輸出。本研究之優勢在於非球面微透鏡的設計與加工能力,且透鏡之直徑大小僅200 μm,與光纖整合後之體積仍非常小,且整合式的光纖透鏡不需額外的光學對準與元件組裝。本文將使用單模光纖與波長1550 nm的雷射,主要原因是此種雷射在傳輸時,有最低的損耗,且此時光纖中只有單一模態傳輸,較利於分析。因此本文會先介紹光纖的基本原理及模態理論,與雷射光在光纖中的傳輸理論,並且利用光學模擬軟體ZEMAX,設計聚焦效率高與準直度高的微透鏡;再藉由「準分子雷射行星式加工法」,利用特殊的光罩設計及工件的自轉與公轉,使雷射投射在工件上的機率呈現三維的連續分布,快速且精確地製作軸對稱非球面光纖透鏡;最後實際量測經由光纖透鏡折射後出光之光纖光束的光學特性。實驗結果顯示此加工法所製作之微透鏡具有表面形貌控制性佳、表面粗糙度僅約10 nm、光學特性良好等優點,證明此準分子雷射行星式加工法應用於製作折射式微光學元件之發展潛力。
A single-mode fiber (SMF) with a microlens on one end is widely used as optoelectronic passive devices to facilitate laser-to-fiber coupling in optical communication systems. This thesis will apply the excimer laser planetary contour scanning method to fabricate refractive and aspheric microlenses which can be integrated with optical fibers. Two types of fiber lenses are investigated. The first one is for optic focusing aiming at a minimized focal spot size at a reasonable working distance.The second one is for optical collimation so that the beam coming out from the fiber has minimum divergence. Both types of fiber lenses can find a wide range of applications in electro-optic devices and optical communication.
This thesis starts with the basic analysis on electromagnetic wave propagation in an optic fiber. Gaussian beam theory and the ABCD Law are then applied to characterized important parameters involved.Numerical analysis and optimization of the surface profiles of microlenses are carried out by ZEMAX. Finally, an KrF excimer laser micromachining system is utilized for the fabrication processes. The basic idea is based on a specific mask design method and a sample rotation method which includes both self-spinning and circular revolving to provide a probability function of laser machining. The probability function created by the planetary scanning assures a continuous, smooth,and precise surface profile to the machined microstructures. The surface profiles are measured and compared with their theoretical counterparts.Excellent agreements both in profile shapes and dimensions are achieved. The machining profile accuracy and surface smoothness of this proposed micromachining method show great potentials in fabricating micro-optic components.
[1] Lin, L.Y., Goldstein, E.L., Tkach, R.W., “Free-Space Micromachined Optical Switches with Submillisecond Switching Time for Large-Scale Optical Crossconnects,” IEEE Phot. Technology Letters ,Vol. 10, No.4, pp.525-527, (1998).
[2] Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee “Diffractive Optical Propagation Techniques for Mixed-Signal CAD Tools, ”Appl. Opt., Vol. 47, No.10 ( 2008).
[3] L. G. Cohen and M. V. Schneider, “Microlenses for Coupling Junction Laser to Optical Fibers,” Appl. Opt., Vol. 13, pp. 89-94 (1974).
[4] H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient Coupling from Semiconductor Lasers into Single-Mode Fibers with Tapered Hemispherical ends, ” Appl Opt. Vol.19, pp.2578-2582 (1980).
[5] Chung-Hao TIEN, Yin-Chieh LAI, Tom D. MILSTER1 and Han-Ping D. SHIEH, “Design and Fabrication of Fiberlenses for Optical Recording Applications,” Appl. Phys. Vol. 41, pp. 1834–1837 (2002).
[6] A. Kotsas, H. Ghafouri Shiraz, and T. S. M. Maclean, “Microlens Fabrication on Single-Mode Fibres for Efficient Coupling from Laser Diodes, ” Optical and Quantum Electronics, Vol. 23, pp.367-378 (1991).
[7] K. R. Kim, S. Chang, and K. Oh, “Refractive Microlens on Fiber Using UV-Curable Fluorinated Acrylate Polymer by
Surface-Tension, ” IEEE Photonics Technology Letters, Vol. 15, pp.1100-1102 (2003).
[8] H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng,“High-Coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect, ” Journal of Lightwave Technoogy, Vol. 22, pp.1395-1401 (2004).
[9] 呂昱寬, 鄭木海, 新型四角錐型光纖透鏡,國立中山大學通訊工程研究所碩士論文, 民國92年
[10] 林依恩,光纖通訊元件簡介講義,教育部顧問室光通訊系統教育
改進計畫
[11] John A. Buck, Fundamentals of Optical Fibers, A John Wiley & Sons, Inc., USA (2003)
[12] http://www.attoworld.de/education/PhotonicsI-ChapterIII-2.pdf
[13] Fischer, Robert Edward, Optical Systems Design, McGraw-Hill,USA (2000).
[14] Warren J. Smith, Modern Optical Engineering, McGraw-Hill, USA (2000).
[15] K. Naessens, Heidi Ottevaere, P. Van Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation," Appl. Surf., Vol. 208-209, pp.159-164 (2003).
[16] 陳峻明, 李永春, 折射式微透鏡之準分子雷射LIGA 製程開發與光學檢測, 國立成功大學機械工程研究所碩士論文, 民國93年.
[17] 吳俊穎, 李永春, 任意曲面3D微結構之準分子雷射加工及光學
應用,國立成功大學微機電系統工程研究所碩士論文, 民國94年.
[18] 黃冠欽, 李永春, 準分子雷射機率式加工法應用於任意曲面三
維微結構之製作,國立成功大學機械工程研究所碩士論文, 民國
94年.
[19] James Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society (1993).
[20] 國科會精密儀器發展中心, 微機電系統技術與應用, 全華科技
圖書公司, 台北, 民國92年.
[21] Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee,“Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. Vol. 47,No.10 / 1 (2008).
[22] 葉斯銘, 鄭木海, 橢圓光纖微透鏡之研究,國立中山大學光電工程研究所博士論文, 民國96年
[23] 柯駿程, ZEMAX軟體實作講義, 訊技科技股份有限公司, 民國
92年
[24] http://zh.wikipedia.org/wiki/%E9%A6%96%E9%A1%B5