| 研究生: |
陳冠宇 Chen, Kuan-Yu |
|---|---|
| 論文名稱: |
量子位障厚度對氮化鎵系列發光二極體影響之研究 Investigation of effects of quantum barrier thickness on GaN-based light-emitting diodes |
| 指導教授: |
張守進
Chang, Shoou-Jinn 陳志方 Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 發光二極體 、氮化鎵 、位障 |
| 外文關鍵詞: | LED, GaN, barrier |
| 相關次數: | 點閱:124 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們成功研製了不同條件的氮化鎵發光二極體。在本論文中,成長10對的氮化銦鎵/氮化鎵多重量子井時,我們保持量子井的厚度為3奈米,改變量子位障的厚度(分別為12奈米, 9奈米, 6奈米)。位障較厚的發光二極體有較大的順向偏壓和串聯電阻,這是因為載子的傳輸是受到能障厚度和能障高度所影響,能障越厚和能障越高都不利於載子的傳輸,我們發現位障較厚的發光二極體有能帶傾斜較嚴重的量子井、能障較高的位障以及能障較厚的位障。
此外,我們以電致發光來進行光特性的研究,發光起始波長和遮蔽現象導致的藍移是和量子侷限史塔克效應有高度相關的,LED I(位障厚度為12 奈米)、LED II(位障厚度為9奈米)、LED III(位障厚度為6奈米)的遮蔽現象導致的藍移分別是0.70奈米、0.29奈米、0.10奈米,從光輸出功率轉換而得的外部量子效率我們分成外部量子效率的峰值和效率下滑兩個部分進行討論。最後,我們計算了發光二極體的介面溫度,位障較厚的發光二極體有較高的介面溫度,這個結果主要是由插座轉換效率所主導,另一方面,串聯電阻也會貢獻一部分的焦耳熱到發光二極體的介面。
GaN-based light emitting diodes have been fabricated and investigated. In this study, the 10 periods of InGaN/GaN MQWs are grown by varying the thickness of the GaN barriers (12 nm, 9 nm, 6 nm), keeping the thickness of the In0.23Ga0.77N wells constant at 3 nm. The LED with thicker barriers is found to have higher forward voltage and series resistance. It is attributed to that the carrier transport depends on barrier thickness and barrier height. Thick barrier thickness and high barrier height are hard for carriers to transport. It is found that LED with thicker barrier thickness has severer band bending in wells, higher barrier height in barriers, and thicker barrier thickness in barriers.
In addition, the optical characteristics are investigated by electroluminescence (EL). The initial emission wavelength and blueshift of emission wavelength caused by screening effect is related to the quantum-confined Stark effect (QCSE). The blueshift of screening effect of LED I (barrier = 12 nm), LED II (barrier = 9 nm) and LED III (barrier = 6 nm) are 0.70 nm, 0.29 nm and 0.10 nm, respectively. External quantum efficiency (EQE), converted from light output power, is discussed by two parts, which are EQE peak and efficiency droop. Lastly, the junction temperatures of the LEDs are calculated. The LED with thicker barriers has higher junction temperature. The wall plug efficiency (WPE) dominates the junction temperature, and series resistance also contributes some Joule heat to the junction.
Chapter 1
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm”, Appl. Phys. Lett. 76, 22 (2000)
[2] H. Aktas, Z. F. Fan, S. N. Mmohammand, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett. Vol. 69,3872 (1996)
[3] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright Green InGaN Single- Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys. 34, L1332-L1335 (1995)
[4] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. George Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting”, Journal of Display Technology, Vol.3, No.2 (2007)
[5] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett. 91, 183507 (2007)
[6] S. J. Leem, Y. C. Shin, K. C. Kim, E. H. Kim, Y. M. Sung, Y. Moon, S. M. Hwang, T. G. Kim, “The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers”, J. Cryst. Growth, 311, pp.103-106 (2008)
[7] X.Guo, E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates”, Appl. Phys. Lett., 78, 3337 (2001)
[8] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett., 66, 1249 (1995)
[9] N. Duxbury, U. Bangert, and P. Dawson, E. J. Thrush, W. Van der Stricht, K. Jacobs, and I. Moerman, “Indium segregation in InGaN quantum-well structures”, Appl. Phys. Lett., 76, 1600 (2000)
[10] D. J. Kim, Y. T. Moon, K. M. Song and S. J. Park, “Effect of Barrier Thickness on the Interface and Optical Properties of InGaN/GaN Multiple Quantum Wells”, Jpn. J. Appl. Phys., 40, pp.3085-3088 (2001)
[11] M. C. Tsai, S. H. Yen, Y. C. Lu and Y. K. Kuo, “Numerical Study of Blue InGaN Light-Emitting Diodes With Varied Barrier Thicknesses”
[12] Y. L. Li, Y. R. Huang, Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well lightemitting diodes with varying quantum well thickness”, Appl. Phys. Lett., 91, 181113 (2007)
Chapter 2
[1] V. Selvamanickam *, H. G. Lee, Y. Li, X. Xiong, Y. Qiao, J. Reeves, Y. Xie, A. Knoll, K. Lenseth, “Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition”, Physica C, 392–396, 859–862 (2003)
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., 35, pp. L74-L76 (1997)
[3] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador and H. Morkoc, “Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped field‐effect transistors”, Appl. Phys. Lett., 69, 1229 (1996)
[4] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., 31, pp. L139-L141 (1992)
[5] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation”, Jpn. J. Appl. Phys., 28, 12, L2112 (1989)
[6] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., 15, 327 (1969)
[7] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of GaN using BCl3”, Appl. Phys. Lett., 64, 887 (1994)
[8] E. Sillero, F. Calle, M. A . Sanchez-Garcia, “GaN reactive ion etching using SiCl4:Ar:SF6 Chemistry”, J. Mater. Sci.-Mater. Electron., 16, 7 (2005)
[9] G. F. Mclane, L. Casas, S. J. Pearton, and C. R. Abernathy, “High etch rates of GaN with magnetron reactive ion etching in BCl3 plasmas”, Appl. Phys. Lett., 66, 3328 (1995)
[10] A. T. Ping, I. Adesida, and M. Asif Khan, “Study of chemically assisted ion beam etching of GaN using HCl gas”,Appl. Phys. Lett., 67, 1250 (1995)
[11] L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester, and S. D. Hersee, “Electron cyclotron resonance etching characteristics of GaN in SiCl4/Ar”, Appl. Phys. Lett., 68, 367 (1996)
[12] D. S. Wuu, C. R. Chung and Y. H. Liu, R. H. Horng and S. H. Huang “Deep etch of GaP using high-density plasma for light-emitting diode applications”, J. Vac. Sci. Technol. B, 20, 902 (2002)
[13] S. J. Pearton, C. R. Abernathy, F. Ren and J. R. Lothian, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy”, J. Vac. Sci. Technol. A, 11, 1772 (1993)
[14] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, and R. F. Davis, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma”, Appl. Phys. Lett., 71, 3631 (1997)
[15] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, “Inductively coupled plasma etching of GaN”, Appl. Phys. Lett., 69, 1119 (1996)
[16] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications”, J. Vac. Sci. Technol. B, 20, 3 (2002)
[17] H. Xu, “FABRICATION AND ELECTRICAL/OPTICAL CHARACTERIZATION OF BULK GAN-BASED SCHOTTKY DIODES”, AUBURN UNIVERSITY (2009)
[18] C. Koughia, Safa Kasap, Peter Capper (2006), Springer Handbook of Electronic and Photonic Materials (1st edition), Springer
[19] H. Morkoc (2008), Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth (1st edition), Wiley-VCH
[20] S. Strite and H. Morkoc, “GaN, AIN, and InN: A review”, J. Vac. Sci. Technol. B., 10, 4 (1992)
[21] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy”, Appl. Phys. Lett., 68, 2541 (1996)
[22] V. Fiorentini, F. Bernardini, O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-Vnitride alloy heterostructures”, Appl. Phys. Lett., 80, 7 (2002)
[23] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nature, 406, 865 (2000)
[24] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction”, Solid-State Electronics, 51, pp. 860-864 (2007)
[25] J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, ”Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes”, Appl. Phys. Lett., 92, 101113 (2008)
[26] Y. L. Li, Y. R. Huang, and Y. H. Lai, “Investigation of Efficiency Droop Behaviors of InGaN/GaN Multiple-Quantum-Well LEDs With Various Well Thicknesses”, IEEE J. Sel. Top. Quantum Electron., 15, 4, 2009
[27] H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges”, IEEE Trans. Electron Devices, 57, 1 (2010)
[28] E. F. Schubert, “LIGHT-EMITTING DIODES”, Cambridge University Press
[29] Y. Xi and E. F. Schubert, “Junction temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett., 85, 12 (2004)
[30] Y. J. Lee, C. J. Lee, C. H. Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes”, IEEE J. Quantum Electron., 46, 10 (2010)
[31] W. B. Joyce and R. W. Dixon, “Thermal resistance of heterostructure lasers”, J. Appl. Phys., 46, 2 (1975)
Chapter 3
[1] M. Leroux, N. Grandjean, and J. Massies, “Barrier-width dependence of group-III nitrides quantum-well transition energies”, Phys. Rev. B, 60, 3 (1999)
[2] J. L. Sanchez-Rojas, J. A. Garrido, and E. Munoz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices”, Phys. Rev. B, 61, 4 (2000)
[3] E. Kuokstis, J. W. Yang, G. Simin, M A. Khan, R. Gaska, M. S. Shur, “Two mechanism of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells”, Appl. Phys. Lett., 80,6 (2002)
[4] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells”, Appl. Phys. Lett., 73,3571 (1998)
[5] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction”, Solid-State Electronics, 51, 860 (2007)
[6] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, ””Blue” temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett., 71, 569 (1997)
[7] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “”S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett., 73, 1370 (1998)
[8] Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate”, IEEE J. Sel. Top. Quantum Electron. 15, 4 (2009)
[9] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer”, Appl. Phys. Lett., 97, 251114 (2010)
[10] S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency doop in InGaN/GaN multiple quantum well light-emitting diodes”, Appl. Phys. Lett., 94, 231123 (2009)
[11] E. F. Schubert, “LIGHT-EMITTING DIODES”, Cambridge University Press (2003)
[12] M. C. Tsai, S. H. Yen, Y. C. Lu, and Y. K. Kuo, “Numerical Study of Blue InGaN Light-Emitting Diodes With Varied Barrier Thicknesses”, IEEE Photonics Technol. Lett., 23, 2 (2011)
[13] X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells”, Appl. Phys. Lett., 93, 171113 (2008)
[14] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, “Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes”, Appl. Phys. Lett., 96, 231101 (2010)
Chapter 4
[1] Y. J. Lee, C. J. Lee, C. H. Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes”, IEEE J. Quantum Electron., 46, 10 (2010)
[2] Y. H. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “”S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett., 73, 1370 (1998)
Chapter 5
[1] C. H. Wang, S P. Chang, W. T. Chang, J. C Li, Y S. Lu, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells”, Appl. Phys. Lett., 97, 181101 (2010)
[2] M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers”, Appl. Phys. Lett., 98, 111114 (2011)
[3] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes”, IEEE J. Quantum Electron., 38, 5 (2002)
[4] A. Di Carlo, F. Della Sala, P. Lugil, V. Fiorentini, and F. Bernardini, “Doping screening of polarization fields in nitride heterostructures,” Appl. Phys. Lett., 76, 26 (2000)