簡易檢索 / 詳目顯示

研究生: 王威智
Wang, Wei-Chi
論文名稱: 磁性微脂粒製備之研究
The Study of Magnetic Liposome Synthesis
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 159
中文關鍵詞: 磁性微脂粒磁熱治療
外文關鍵詞: hyperthermia, magnetic liposome, SAR
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性微脂粒是一種以磁性物質為核心、以磷脂質為外層結構的藥物輸送載體,其具有極大的發展潛力於藥物載體、藥物釋放、癌症治療、熱治療、甚至是生化分離。近年來,科學家們已經成功地利用磁性微脂粒進行生物相容性測試、或是腫瘤治療。因為磁性微脂粒是由對正常細胞毒殺性較小的氧化鐵以及磷脂質所組成,而正因為這樣的高度生物相容性,目前這類的藥物輸送載體也受到越來越多的矚目。
    儘管磁性微脂粒有如此大的生物應用潛力,但是高純度的磷脂質,在一般市面上的價格仍然過於昂貴。這種情形,對於一些剛開始想從事這類研究的研究員而言,無疑是一項沈重的經濟壓力。
    陰陽離子對(IPA-ion pair amphiphile),是一種分別由陰性及陽性界面活性劑所組成的「類似磷脂質結構」的界面活性劑。其所形成的液胞結構,和磷脂質所組成的微脂粒,在結構上具有高度的相似性。
    利用這漾的概念,「使用陰陽離子對取代磷脂質而形成磁性液胞」,吾人可以建立並且製備出磁性液胞。而在穿透式電子顯微鏡的觀察下,更可以證明陰陽離子對的確具有包覆氧化鐵形成磁性液胞的能力。
    藉由磁性液胞研究的經驗,此外,並利用德國藥商所提供的商用磷脂質-PLG90。靠著一般在微脂粒製備上所採用的薄膜水合法,吾人可以成功的製備出所謂的磁性微脂粒,並在穿透式電子顯微鏡的觀察下,更可以明顯看出磷脂質包覆於氧化鐵表面的存在。
    但是由於磷脂質的相轉移溫度較低以及缺乏冷凍式穿透電子顯微鏡,在高溫壓的顯微鏡電子束照射下,磁性微脂粒的外型容易變形甚至發生破裂的現象。因此,為了解決這一個問題,以氧化鐵為核,聚甲基丙烯酸甲酯為殼之核殼型奈米球,以及聚甲基丙烯酸甲酯奈米球,甚至是金奈米粒子,經證實均可以成功的當作磷脂質的支撐載體。吾人在穿透式電子顯微鏡觀察下,均可以明顯觀察到磷脂質層包覆於奈米球的表面上。
    吾人結合磷脂質包覆的特性、微脂粒的製備方式以及甲基丙烯酸甲酯奈米球,並且成功利用磷脂質與十二碳酸單層修飾過的氧化鐵的交互作用力,可以成功製備出氧化鐵自發性相嵌於聚甲基丙烯酸甲酯奈米球外部磷脂質層裡的一種藥物載體。此類的藥物載體,其所具有的生物相容性-由磷脂質組成、可控制性-由熱重差分析儀可分析出所含比例、簡便性-不需額外的高度技巧便可製備而成,替換性-可以選用更生物相容性的載體或是藥物粒子為磷脂質支撐載體,都是將來可以開發的利基點。
    最後,由於磁性流體可在交流電磁場下,將電磁能轉化成熱能。吾人對電機系戴政祺教授及陳明坤博士所研發出的交流電磁場進行測試。在加熱測試中,可成功地得到加熱曲線,並經由計算,吾人所製備出的磁性流體-以十二碳酸修飾過的氧化鐵溶液配合所發展出的交流電磁場,其電磁波能量吸收比值(SAR)約為2.45(W/Fe g),並且以同樣的磁性流體樣本,使用在何國川教授實驗室的商用高週波加熱器進行比較,此一樣本在商用高週波的其電磁波能量吸收比值約為70.4(W/Fe g).

    Magnetic liposome is a kind of drug carriers with magnetite as core and lipid layers as outside shells, which has great potential applications in drug delivery system, drug release system, cancer therapy, hyperthermia, even in bio-separation. In recent years, scientists have already used magnetic liposomes to do biocompatible test or tumor treatment.Because of the biocompatible properties -- lipid and magnetite have less toxicity to normal cells -- magnetic liposomes, this kind of drug carriers, attracts more and more attentions in recent years.
    Although magnetic liposomes have great potential applications in biotechnology, however, the price of the pure lipid is too expensive for researchers who want to develope magnetic liposome system as their research topics at the beginning. Lack of the experience and financial support would be problems for them at the first.
    IPA (ion pair amphiphile) is a “catanionic surfactant”, which is synthesized by the cationic surfactant and the anionic surfactant. It could be formed the vesicle structure - the same structure as the liposome structure by lipid. Because of this property, the idea -- “using IPA to replace lipid to form magnetic vesicle” -- would be possible for us to synthesize magnetic IPA-vesicles at the beginning. With the TEM experiment, the magnetite could really be enveloped into the IPA-vesicles.
    The commercial lipid-PLG90 was used to synthesize magnetic liposomes. With this materials and the conventional thin film method, three kinds of the magnetic liposomes would be synthesized. .
    Lipid is a kind of biocompatible materials. Coating the lipid layers onto nanoparticles attracts interests for their use as cell membranes and applications in biotechnology, such as magnetic liposome.
    But, due to the low transition temperature of the lipid and the lack of cryotransmission electron microscopy (cryo-EM), the shape of magnetic liposome would be changed, or even broken, under the exposure to electron bean of the TEM. Therefore, three kinds of the nanoparticles were synthesized - Fe3O4@PMMA, PMMA, gold nanoparticles for their use as the supporters of the lipid layers.
    And with the conventional thin film method and the properties of lipid, the lipid layers would spontaneously be coated onto the surface of the nanoparticles – PMMA, gold, and Fe3O4@PMMA nanoparticles, then to become the core@shell complex – the nanoparticles as cores and lipid as the shell.
    Moreover, in order to load much more of the magnetite onto the surface of the nanoparticles for future applications. With the conventional magnetic thin film method, and the interactions between the Fe3O4@momolayer lauric acid and lipid, the easy method to coat magnetite onto the surface of the nanoparticles was developed in this thesis. By the TEM pictures, it was obviously to see that, there were a lot of magnetite and lipid coated onto the surface of the PMMA nanoparticles
    Finally, in order to perform the hyperthermia treatment, the heating ability of the magnetic fluid should be researched first. The AC generated field was developed by Dr. Cheng. The SAR (specific absorption rate) of the magnetic fluid was researched by this AC field machine. Moreover, the magnetic fluid was also tested by the commercial high frequency AC field machine in the professor Ho laboratory. The magnetic fluid for SAR test is Fe3O4@lauric acid. Moreover, the SAR value of the magnetic fluid in AC field by Dr. Cheng is about 2.45 (W/Fe g), and is about 70.4 (W/Fe g) in the commercial coil AC field machine in the professor Ho laboratory

    Chapter 1 Introduction------------------------------------------------------001 1-1 Introduction------------------------------------------------------------001 1-2 Motivation--------------------------------------------------------------002 1-2-1 Magnetic liposome synthesis-------------------------------------------002 1-2-2 Magnetic vesicles synthesis with IPA----------------------------------002 1-2-3 Magnetic liposomes synthesis with commercial lipid-PLG90--------------002 1-2-4 Lipid coating onto the nanoparticles----------------------------------002 1-2-5 SAR of magnetic fluid-------------------------------------------------003 Chapter 2 Research foundation-----------------------------------------------004 2-1 History of hyperthermia-------------------------------------------------004 2-2 Principle of hyperthermia-----------------------------------------------005 2-3 Methods of hyperthermia treatment---------------------------------------006 2-3-1 Invasive method-------------------------------------------------------006 2-3-2 Non-invasive method---------------------------------------------------006 2-3-2-1 High energy X-ray as energy source and gold nanoparticles as heat seeds--007 2-3-2-2 Near infrared light as energy source and SiO2@gold nanoparticles as heat seeds------------------------------------------------------------------007 2-3-2-3 AC-field as energy source-------------------------------------------008 2-4 Specific absorption rate (SAR) of the magnetic fluid--------------------009 2-4-1 Mechanisms of the SAR effect------------------------------------------009 2-4-2 Heating factors related to SAR effect---------------------------------010 2-4-2-(a) SAR with the different size of the magnetite----------------------010 2-4-2-(b) SAR with the different amplitude of the AC field------------------011 2-4-2-(c) SAR with the different frequency of the AC field------------------011 2-5 Magnetic materials------------------------------------------------------011 2-6 Introduce of Magnetic liposome------------------------------------------012 2-6-1 History of magnetic liposome------------------------------------------012 2-6-2 Magnetic liposome synthesis-------------------------------------------013 2-6-2-(a) PH-jump method to synthesize magnetic liposome--------------------013 2-6-2-(b) Dialysis method to synthesize magnetic liposomes------------------013 2-6-2-(c) Using conventional film method to form magnetic liposome----------014 2-6-2-(C-1) thin film method-magnetic nanoparticles as water soluble drug---014 2-6-2-(C-2) thin film method - magnetic nanoparticles as oil soluble drug---014 2-6-2-(d) emulsion method or the reverse-phase evaporation method-----------015 2-7 Vesicular system with the IPA system------------------------------------015 2-8 Magnetic vesicles synthesized by surfactants----------------------------015 2-9 Lipid coating onto the surface of the nanoparticles---------------------016 2-10 AC field hyperthermia machine------------------------------------------016 Chapter 3 Experiment -------------------------------------------------------041 3-1 The experimental drug---------------------------------------------------041 3-2 The experimental instrument---------------------------------------------043 3-3 Magnetic fluid synthesis - Fe3O4@bilayer lauric acid nanoparticles synthesis-------------------------------------------------------------------044 3-3-1 Magnetic Fe3O4 nanoparticles synthesis--------------------------------044 3-3-2 Magnetic Fe3O4@lauric acid fluid - bilayer lauric acid coating--------044 3-3-3 Magnetic Fe3O4@lauric acid fluid - monolayer lauric acid coating------044 3-4 IPA, IPA-vesicles, and magnetic IPA-vesicles synthesis------------------044 3-4-1 Ion pair amphiphile (IPA) synthesis-----------------------------------045 3-4-2 Vesicle synthesizing by IPA with conventional thin film method--------045 3-4-3 Magnetic vesicles synthesized by IPA with conventional thin film method------------------------------------------------------------------------------045 3-5 Magnetic liposome synthesis with the lipid-PLG90------------------------045 3-5-1 Fe3O4@PLG90 magnetic nanoparticles synthesis--------------------------046 3-5-2 liposomes synthesis with the lipid-PLG90------------------------------046 3-5-3 Magnetic liposome synthesis with the lipid-PLG90 by the conventional thin film method------------------------------------------------------------046 3-5-4 Magnetic liposome synthesis with the lipid-PLG90 by the conventional magnetic thin film method---------------------------------------------------047 3-6 Magnetic carriers with lipid coating nanoparticles synthesis------------047 3-6-1 Fe3O4@PMMA nanoparticles synthesis------------------------------------047 3-6-2 synthesizing the pure PMMA nanoparticles for comparison---------------047 3-6-3 synthesizing the pure gold nanoparticles for comparison---------------048 3-6-4 coating lipid layer onto the Fe3O4@PMMA nanoparticles-----------------048 3-6-5 coating lipid layer onto the PMMA nanoparticles-----------------------048 3-6-6 coating lipid layer onto the gold nanoparticles-----------------------048 3-6-7 coating IPA layer onto the gold nanoparticles-------------------------049 3-6-8 using the PMMA@lipid nanoparticles as supporter to absorb Fe3O4@lauric acid nanoparticles-directly sonicated---------------------------------------049 3-6-9 using magnetic lipid layers to coat magnetite onto PMMA nanoparticles-049 Chapter 4 Experiment result-------------------------------------------------052 4-1 Experiment result of magnetic fluid-------------------------------------052 4-1-1 TEM and SEM of magnetic fluid-----------------------------------------052 4-1-2 TGA of Fe3O4 nanoparticles, Fe3O4@bilayer lauric acid nanoparticles, the Fe3O4 nanoparticles and pure lauric acid------------------------------------053 4-1-3 XRD of Fe3O4 nanoparticles, Fe3O4@lauric acid nanoparticles, and pure lauric acid-----------------------------------------------------------------054 4-1-4 IR of Fe3O4 nanoparticles, Fe3O4@bilayer lauric acid, Fe3O4@monolayer lauric acid-----------------------------------------------------------------054 4-2 Experiment result of IPA, IPA-vesicles, magnetic IPA-vesicles synthesis-065 4-2-1 TGA of IPA, SDS, DTMAB------------------------------------------------065 4-2-2 XRD of IPA, SDS, DTMAB------------------------------------------------065 4-2-3 FTIR and ESCA of IPA, SDS, DTMAB--------------------------------------065 4-2-4 Morphology change of IPA slurry in oven at 60C------------------------066 4-2-5 DSC analysis of IPA---------------------------------------------------066 4-2-6 polarizing pictures of IPA slurry when heating process or cooling process---------------------------------------------------------------------066 4-2-7 TEM and HR-SEM of the IPA-vesicles------------------------------------067 4-2-8 TEM and HR-SEM of the magnetic IPA-vesicles---------------------------067 4-3 Experiment result of magnetic liposome synthesis------------------------082 4-3-1 Fe3O4@PLG90 nanoparticles synthesis-----------------------------------082 4-3-1-(a) TEM and HR-SEM of Fe3O4@PLG90 magnetic nanoparticles--------------082 4-3-1-(b) XRD pattern of Fe3O4@PLG90-0%, 3% and 6% magnetic nanoparticles-083 4-3-1-(c) TGA of Fe3O4@PLG90 magnetic nanoparticles-------------------------083 4-3-1-(d) IR of Fe3O4@PLG90 magnetic nanoparticles--------------------------083 4-3-2 liposomes synthesis with the lipid-PLG90------------------------------084 4-3-3 Magnetic liposome synthesis with the lipid-PLG90 by the conventional thin film method------------------------------------------------------------084 4-3-4 Magnetic liposome synthesis without additional lipid-PLG90 by the conventional magnetic thin film method--------------------------------------085 4-3-5 Magnetic liposome synthesis with the lipid-PLG90 by the conventional magnetic thin film method---------------------------------------------------086 4-3-6 Different of the alkaline solution was used to synthesize magnetic liposomes with the conventional magnetic thin film method-------------------086 4-4 Results and discusses of magnetic carriers synthesis--------------------108 4-4-1 Results of the Fe3O4@PMMA and Fe3O4@PMMA@lipid nanoparticles synthesis-------------------------------------------------------------------------------108 4-4-2 the results of the IPA coating onto Fe3O4@PMMA nanoparticles and PMMA nanoparticles---------------------------------------------------------------108 4-4-3 result of the lipid coating onto PMMA nanoparticles-------------------109 4-4-4 the result of the PLG90 lipid and IPA coating onto gold nanoparticles-109 4-4-5 using the PMMA@lipid nanoparticles as supporter to absorb Fe3O4@lauric acid nanoparticles-directly sonication--------------------------------------109 4-4-6 The PMMA@lipid nanoparticles as supporter to absorb Fe3O4@lauric acid nanoparticles - conventional magnetic thin film method----------------------110 Chapter 5 Discuss and conclusions-------------------------------------------133 Chapter 6 reference---------------------------------------------------------134 Appendix--------------------------------------------------------------------142 Part A-1 the self-made carbon-copper grid-----------------------------------142 Part A-2 Making TEM samples-------------------------------------------------142 Partr B specific absorption rate (SAR) of Fe3O4@lauric acid-----------------143 B-1 the test samples, AC generating machine, and test method----------------143 B-2 the heating curves for the bottle A used as the testing bottle----------145 B-3 the heating curves for the bottle B used as the testing bottle----------148 B-4 the heating curves for the bottle B used as the testing bottle after the AC generate machine was improved--------------------------------------------151 B-5 the heating curves for the bottle C used as the testing bottle.---------152 B-6 using the commercial high frequency AC field for comprising-------------154 Part C the other nanoparticles synthesis------------------------------------157 C-1 the 50nm Fe3O4 nanoparticles--------------------------------------------157 C-2 Fe3O4 nanoparticles synthesized with tetramethylammonium ---------------158

    【01】O. selawry, M. Goldstein, T. McComick, “Hyperthermia in tissue cultured cells of malignant origin”, Cancer Res. 17: 785 – 791, 1957
    【02】E. Huth, “Die Relle der bakteriellen infection bei spontanremission maligner tumoren und leukosen”, Korpereigene Abwehr und bosaritige Geschwultsts, 23 – 37, 1957
    【03】G. Crile, “Selective destruction of cancer after exposure to heat”, Ann. Surg., 156: 404 – 407, 414 – 416, 1962
    【04】R. Pittigrew, “Cancer therapy by whole body heating”, Symp on Cancer Ther by Hyperthermia and Radiation, 282 – 288, 1975
    【05】 J. Larkin, “A clinical investigation of total – body hyperthermia as cancer therapy”, Cancer Res., 39: 2252 – 2254, 1979
    【06】 J. Bull, “Summary of the informal discussion of animal models and clinical studies” Cancer Res., 39: 2262 – 2263, 1979
    【07】 W. C. Dewey, L. A. Sapareto, L. E. Gerweck, “Cellular responses to combinations of hyperthermia and radiation”, Radiology, 123: 463 – 474, 1977
    【08】E. J. Hall, “ Hyperthermia”, Radiobiology for the radiologist, 5th ed., 504, Philadelphia, Lippincott Williams and Wilkins, 2000
    【09】C. Streffer, “Molecular and cellular mechanisms of hyperthermia”, Hyperthermia and the therapy of malignant tumors, 61, Berlin; New York: Springer – Verlag, 1987
    【10】IEEE Trnsactions on Microwave Theory and Techiques. Vol. 52, No. 8, August 2004
    【11】The Use of gold nanoparticles to enhance radiotherapy in mice Phys. Med. Biol. 49 (2004) N309–N315
    【12】C. Loo, B.S., A. Lin, B.S., L. Hirsch, B.S., M. H. Lee, M.S., J. Barton, Ph.D., N. Halas, Ph.D., J. West, Ph.D., R. Drezek, Ph.D., Technology in Cancer Research & Treatment, Volume 3, Number 1, February (2004), Adenine Press.
    【13】L. R. Hirsch , S. R. Sershen, N. J. Halas, R. J. Stafford, J. Hazle, J. L. West, 2003 Summer Bioengineering Conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida.
    【14】D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles”, Cancer Letters 209 (2004) 171–176
    【15】J. L. West and N. J. Halas, Biotechnology 2000, 11:215–217.
    【16】 L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A Whole Blood Immunoassay Using Gold Nanoshells”, Anal. Chem. 2003, 75, 2377-2381
    【17】L. R. Hirsch, A. M. Gobin, A. R. F. Tam, R. A. Drezek, N. Halas, and J. L. West, “Metal Nanoshells”, Annals of Biomedical Engineering, Vol. 34, No. 1, January 2006 pp. 15–22
    【18】C. Loo, L. Hirsch, M. H Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells” OPTICS LETTERS, Vol. 30, No. 9 May 1, 2005
    【19】A. M. Gobin, D. P. O’Neal, N. J. Halas, R.A. Drezek, J. L. West, “Laser Tissue Soldering with Near-Infrared Absorbing Nanoparticles”, Proc. of SPIE Vol. 5686, 261 - 266
    【20】C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy”, Nano letters, vol. 5, No. 4, 709-711
    【21】D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal cancer therapy using intravenously injected near infraredabsorbing nanoparticles”, Proc. of SPIE Vol. 5689, 149-157
    【22】R.K. Gilchrist, R. Medal, W.D. Shorey, et al., Ann. Surg. 146 (1957) 596.)
    【23】趙良曉,王曼肇,鐵磁性熱種子之病熱治療,1980,碩博士論文網。
    【24】劉讚衛,鐘炳濤,王曼肇,自律式鎳合金種子加熱之癌病熱治療腫瘤模型溫度分佈,1979,碩博士論文網。
    【25】I. Hilger, R. Hergt, W. A. Kaiser, “Towards breast cancer treatment by magnetic heating”, Journal of Magnetism and Magnetic Materials 293 (2005) 314–319
    【26】A. Ito, K. Tanka, H. Honda, S. Abe, H. Yamaguchi, and T. Kobyashi, JOIJKNAI OF BIOSCIENCE AND BIOENWNEERING, Vol. 96, No. 4, 364-369. 2003.
    【27】D. M. Schultea, T. S. Rodeb, “Thermosensitive magnetic polymer particles as contactless controllable”, Journal of Magnetism and Magnetic Materials, articles in press
    【28】M.H.A. Guedes, M.E.A. Guedes, P.C. Morais, M.F. Da Silva, T.S. Santos, J.P. Alves Jr, C.E. Bertelli, R.B. Azevedo, Z.G.M. Lacava, Journal of Magnetism and Magnetic Materials 272–276 (2004) 2406–2407.
    【29】 M. Babincova, D. Leszcynska, P. Souriving, et al., J. Magn. Magn. Mater. 225 (2001) I09
    【30】 S. Mornet, S. Vasseur, F. Grasset and E. Duguet, J. Mater. Chem. 2004, 14, 2161-2175.
    【31】 M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, Journal of Magnetism and Magnetic Materials 268 (2004) 33–39.
    【32】R. Hergt, W. Andra, C. G. d’Ambly, I. Hilger, W. A. Kaiser, U. Richter and H. G. Schmidt, IEEE Trns. Magn., 1998, 34, 3745-3754.
    【33】C. K. Yin, J. C. Bea, Y. G. Hong, T. Fukushima, M. Miyao, K. Natori and M.
    Koyanagi, “ New Magnetic Flash Memory with FePt Magnetic Floating Gate”,
    Japanese Journal of Applied Physics, Vol. 45, No. 4B, 2006, pp. 3217–3221
    【34】X. Wang, H. Gu, Z. Yang, Journal of Magnetism and Magnetic Materials, article in press.
    【35】A. J. Rosengart, M. D. Kaminskib, H. Chen, Patricia L. Caviness, A. D. Ebner, J. A. Ritter, Journal of Magnetism and Magnetic Materials, article in press.
    【36】F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh, Biomaterials 26 (2005) 729–738.
    【37】A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, Journal of Magnetism and Magnetic Materials 201 (1999) 413-419.
    【38】A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix, Journal of Magnetism and Magnetic Materials 194 (1999) 185-196.
    【39】D. H. Chen, S. H. Huang, Process Biochemistry 39 (2004) 2207–2211.
    【40】S. E. Khalafalla and G. W. Reimers, IEEE Transctions onMgnetics, Vol. MAG-16, No. 2, March, 1980
    【41】D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed, Chem. Mater. 2003, 15, 1617-1627.
    【42】T. Fried, G. Shemer, and G. Markovich, Adv. Mater. 2001, 13, No. 15, August 3, 1158-1161.
    【43】R. M. ullera, H. Steinmetz, R. Hiergeist, W. Gawalek, Journal of Magnetism and Magnetic Materials 272–276 (2004) 1539–1541.
    【44】L. Vayssieres, C. Chaneac, E. Tronc, and J. Pierre Jolivet, Journal of colloid nd Interface Science 205, 205-212
    【45】D. H. Chen and Y. Y. Chen, Journal of Colloid and Interface Science 236, 41–46 (2001).
    【46】J. Lee, T. Isobe, M. Senna, Colloids and Surfaces A: Physicochemical and Engineering Aspects 109 (1996) 121-127.
    【47】Z. Li, L. Wei, M. Gao, and H. Lei, Adv. Mater. 2005, 17, No. 8, April 18, 1001-1005.
    【48】 J. Lee, T. Isobe, AND M. Senna, Journal of Colloid and Interface Science 177, 490-494 (1996)
    【49】E. Marutani, S. Yamamoto, T. Ninjbadgar, Y. Tsujii, T. Fukuda, M. Takano, Polymer 45 (2004) 2231–2235.
    【50】V. P. Dravid, D. L. Johnson, Applied Surface Science 181 (2001) 173-178.
    【51】M. Yamauraa, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, Journal of Magnetism and Magnetic Materials 279 (2004) 210–217.
    【52】X. Liu, Z. Ma, J. Xing, H. Liu, Journal of Magnetism and Magnetic Materials 270 (2004) 1–6.
    【53】D. H. Chen, M.H. Liao, Journal of Molecular Catalysis B: Enzymatic 16 (2002) 283–291.
    【54】L. Shen, P. E. Laibinis, and T. A. Hatton, Langmuir 1999, 15, 447-453.
    【55】W. Zheng, F. Gao, H. Gu, Journal of Magnetism and Magnetic Materials, article in press.
    【56】C. Zhang, H. Sun, J. Xia, J. Yu, S. Yao, D. Yin, Y. Wang, Journal of Magnetism and Magnetic Materials 293 (2005) 193–198.
    【57】R. Hergt, R. Hiergeist, M. Zeisberger, G. Gl.ockl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser, Journal of Magnetism and Magnetic Materials 280 (2004) 358–368.
    【58】R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, S. Margel, U. Richter, Journal of Magnetism and Magnetic Materials 270 (2004) 345–357.
    【59】T. Maehara, K. Konishi, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe and K. Kawachi, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 1620–1621.
    【60】R. Muller, R. Hergt, M. Zeisberger, W. Gawalek, Journal of Magnetism and Magnetic Materials 289 (2005) 13–16.
    【61】H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, and X. R. Wang, Anal. Chem.2004, 76,1316-1321.
    【62】S. J. Cho and S. M. Kauzlarich, JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 11, 6804-6806.
    【63】T. Kinoshita, S. Seino, H. Maruyama, Y. Otome, K. Okitsu, T. Nakayama, K. Niihara, T. Nakagawa, T.A. Yamamoto, Journal of Alloys and Compounds 365 (2004) 281–285.
    【64】T. Kinoshita, S. Seino, K. Okitsu, T. Nakayama, T. Nakagawa, T.A. Yamamoto, Journal of Alloys and Compounds 359 (2003) 46–50.
    【65】M. Mandal, S. Kundu, S. K. Ghosh, S. Panigrahi, T. K. Sau, S. M. Yusuf, T. Pal, Journal of Colloid and Interface Science 286 (2005) 187–194.
    【66】D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, J. AM. CHEM. SOC. 2005, 127, 4990-4991.
    【67】Marie-Sophie Martina, Jean-Paul Fortin, Christine Menager, Olivier Clement, Gillian Barratt, Cecile Grabielle-Madelmont, Florence Gazeau, Valerie Cabuil, and Sylviane Lesieur, J. AM. CHEM. SOC., article in press.
    【68】M. Chastellain, A. Petri, A. Gupta, K. V. Rao, and H. Hofmann, ADVANCED ENGINEERING MATERIALS 2004, 6, No. 4, 235-241.
    【69】M. A. G. Soler, S. W. da Silva, T. F. O. Melo, M. De Cuyper, P. C. Morais, Journal of Magnetism and Magnetic Materials 252 (2002) 415–417.
    【70】P. C. Moraisa, K. Skeff Neto, P. P. Gravina, L. C. Figueiredo, M. F. Da Silva, Z. G.M. Lacava, R. B. Azevedo, L. P. Silva, M. De Cuyper, Journal of Magnetism and Magnetic Materials 252 (2002) 418–420.
    【71】S. K.uckelhaus, S.C. Reis, M. F. Carneiro, A. C. Tedesco, D. M. Oliveira, E. C. D. Lima, P. C. Morais, R. B. Azevedo, Z.G.M. Lacava, Journal of Magnetism and Magnetic Materials 272–276 (2004) 2402–2403.
    【72】F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita and T. Kobayashi, BioMagnetic Research and Technology 2004, 2:3, 1-6.
    【73】J. F Hainfeld, D. N. Slatkin and H. M. Smilowitz, Phys. Med. Biol. 49 (2004) N309–N315.
    【74】Christoph Alexiou, Roland Jurgons, Roswitha Schmid, Andrea Hilpert, Christian Bergemann, Fritz Parak, Heinrich Iro, Journal of Magnetism and Magnetic Materials, article in press.
    【75】Jeff W. M. Bulte, Marcel de Cuyper, Daryl Despres, Joseph A. Frank, Journal of Magnetism and Magnetic Materials 194 (1999) 204-209.
    【76】 Akira Ito, Kousuke Ino, Takeshi Kobayashi, Hiroyuki Honda, Biomaterials 26 (2005) 6185–6193.
    【77】M. Kullberg, K. Mann, J.L. Owens, Medical Hypotheses (2005) 64, 468–470.
    【78】M. De Cuyper, M. Joniau, Eur Biophys J(1988)15:311-319.
    【79】F. M. Rocha, S. Cristina de Pinho, R. L. Zollner, M. Helena A. Santana, Journal of Magnetism and Magnetic Materials 225 (2001) 101-108.
    【80】M. M. Elmi, M. N. Sarbolouki, International Journal of Pharmaceutics 215 (2001) 45–50.
    【81】M. Gonzales, K. M. Krishnan, Journal of Magnetism and Magnetic Materials, article in press.
    【82】J. Giri, S. G. Thakurta, J. Bellare, A. K. Nigam, D. Bahadur, Journal of Magnetism and Magnetic Materials, article in press.
    【83】M. Koneracka, P. Kopcansky, P. Sosa, J. Bagelova, M. Timko, Journal of Magnetism and Magnetic Materials, article in press.
    【84】E. Viroonchatapan, M. Ueno, H. Sato, I. Adachi, H. Nafgae, K. Tazawa, and I. Horikoshi, Pharmaceutical Research, vol. 12, No. 8, 1995.
    【85】G. Dumitrascu, A. Kumbhar, W. Zhou, and Z. Rosenzweig, IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001.
    【86】Masashige Shinkai, Mitsugu Yanase, Masataka Suzuki, Hiroyuki Honda, Toshihiko Wakabayashi, Jun Yoshida, Takeshi Kobayashi, Journal of Magnetism and Magnetic Materials 194 (1999) 176-184
    【87】M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida and T. Kobayashi, Jpn. J. Cancer Res. 87, 1179-1183, November 1996.
    【88】E. Viroonchatapan, H. Sato, M. Ueno, Isao Adachi, K. Tazawa, and I. Horikoshi, Life Sciences, Vol. 58, No. 24, 2251-2261, 1996.
    【89】Biaole, M. Shinkai, T. Kitade, H. Honda, J. Yoshida, T. Wakabayashi and T. Kobayashi, J. Chemical Engineering of Japan, Vol. 34, No. 1, 66-72, 2001.
    【90】J. W. M. Bulte, PhD, M. D. Cuyper, PhD, D. Despres, BS, and J. A. Frank, MD, JOURNAL OF MAGNETIC RESONANCE IMAGING 9:329–335 (1999)
    【91】H. Nobuto, T. Sugita, T. Kubo, S. Shimose, Y. Yasunga, Teruo Murakami and Mitsuo OCHI, Int. J. Cancer: 109, 627–635 (2004)
    【92】T. Matsuo, T. Sugita, T. Kubo, Y. Yasunaga, M. Ochi, T. Murakami,
    【93】M. Babincova, P. C icmanec, V. Altanerova , C. Altaner, P. Babinec, Bioelectrochemistry 55 (2002) 17– 19.
    【94】A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, Oleg A. Kuznetsov, Journal of Magnetism and Magnetic Materials 225 (2001) 95}100.
    【95】 M. Babincova, P. Sourivong, D. Chorvat, P. Babinec, Journal of Magnetism and Magnetic Materials 194 (1999) 163166
    【96】P. C. Morais, J. G. Santos, K. S. Neto, F. Pelegrini, M. D. Cuyper, Journal of Magnetism and Magnetic Materials, article in press.
    【97】T. Nawroth, M. Rusp, R. P. May, Physica B 350 (2004) e635–e638.
    【98】M. D. Cuyper, P. Muller, H. Lueken and M. Hodenius, J. Phys.: Condens. Matter 15 (2003) S1425–S1436.
    【99】MARCEL DE CUYPER AND WIM NOPPE, JOURNAL OF COLLOID AND INTERFACE SCIENCE 182, 478–482 (1996).
    【100】M. D. Cuyper, S. Valtonen, Journal of Magnetism and Magnetic Materials 225 (2001) 89-94.
    【100】D. Roberts, W. L. Zhu, C. M. Frommen, and Z. Rosenzweig, “Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging”, JOURNAL OF APPLIED PHYSICS VOLUME 87, NUMBER 9, 6208-6210.
    【101】C. Menager, V. Cabuil, J. of Colloid and Interface Science 169, 251-253(1995).
    【102】J. C. Bacri, V. Cabuil, A. Cebers, C. Menager, R. Perzynski, Materials Science and Engineering: C 2 (1995) 197-203.
    【103】W. Y. Yu, Y. M. Yang, and C. H. Chang, Langmuir 2005, 21, 6185-6193.
    【104】S. J. Yeh, Y. M. Yang, and C. H. Chang, Langmuir 2005, 21, 6179-6184.
    【105】C. Tondre , C. Caillet, “Properties of the amphiphilic films in mixed cationic_anionic vesicles: a comprehensive view from a literature analysis”, Advances in Colloid and Interface Science 93Ž2001.115_134
    【106】Y. Yang, L. Li, G. Chen, “Synthesis of magnetic particles via a cationic–anionic surfactant vesicle method”, Journal of Magnetism and Magnetic Materials, articles in press.
    【107】S. Morne, O. Lambert, E. Duguet, and A. Brisson, “The Formation of Supported Lipid Bilayers on Silica Nanoparticles Revealed by Cryoelectron Microscopy”, Nanoletters, vol. 5, No, 2, (2005) 281-285,
    【108】V. Chupin, A. I. P. M. de Kroon, and B. D. Kruijff, J. AM. CHEM. SOC. 9 VOL. 126, NO. 42, 2004 13821
    【109】王尉任,林輝,The Study of Magnetic Biodegrdable Bioglass for Tumor Hyperthermia,2005,碩博士論文網。
    【110】A. Jordan, R. Scholz, K. M. Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix, Journal of Magnetism and Magnetic Materials 225 (2001) 118 - 126
    【111】E. Katz, L. S. H. Ichia, and I. Willner, Chem. Eur. J. 2002, 8, No. 18
    【112】李雅鈺,陳炳宏,Stability and Encapsulation Behavior of Catanionic Vesicles with Addition of Cholesterol, 2004,碩博士論文網

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE