簡易檢索 / 詳目顯示

研究生: 韓煥章
Han, Huan-Chang
論文名稱: 利用電化學方法監測大鼠腦內多巴胺的濃度
Electrochemical Approach for Monitoring Dopamine Level in Rat’s Brain
指導教授: 陳家進
Chen, Jia-Jin Jason
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 48
中文關鍵詞: 體內安培法多巴胺左旋多巴胺電刺激金奈米粒子11-mercaptoundecanoic acid (MUA)3-mercaptopropionic acid (MPA)
外文關鍵詞: in-vivo amperometry, Dopamine, L-DOPA, electrical stimulation, gold nanoparticles, 11-mercaptoundecanoic acid (MUA), 3-mercaptopropionic acid (MPA)
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症的成因與神經化學傳遞物質多巴胺缺乏有著密切的關係,而多巴胺在精神相關的疾病與運動調節的功能上也扮演重要的角色,因此建立一個能急性期或長期監測動物腦中多巴胺濃度的平台,可以幫助我們針對一些新穎的帕金森症治療方法評估其療效。在本研究中,應用電化學的方法進行量測與評估,發展新的感測電極達到高靈敏度與選擇性以克服腦中複雜的干擾物質,以及進行急性期動物實驗之驗證。我們利用金奈米粒子(Au-NPs)的吸附來增加電極的表面積,再經由11-mercaptoundecanoic acid (MUA)和3-mercaptopropionic acid (MPA)分子改質以加強靈敏性與選擇性。經由水溶液實驗得知,新式感測電極對多巴胺的氧化峰電位大約在0.28 V、且檢測極限低於100 nM,更能有效排除電化學活性干擾物的影響(例如抗壞血酸,ascorbic acid)。在動物體內實驗的部分則在麻醉下進行,感測電極被植入大鼠的紋狀體(striatum)進行記錄,電刺激電極則植入中前腦束 (medial forebrain bundle,MFB),成功地利用電刺激與藥物的方式誘發多巴胺釋放。電刺激的參數為 100 Hz的刺激頻率、300 μA的電流強度持續電刺激1秒,每1秒的刺激則間隔30秒休息。在電刺激持續的期間可以明顯觀察到電流訊號上升,當電刺激結束後約需5 ~ 10秒回到基準電流值,且反應的電流大小與電刺激的頻率、電流強度有著正向的關係。此外,我們也利用了多巴胺的前驅物左旋多巴胺(L-DOPA)進行體內測試,也同樣引起訊號的上升但長達3個小時。總結來說,利用具有高靈敏性與選擇性的Au-NPs-MPA修飾電極進行量測,經由電刺激或是藥物誘發的處理都已經成功量測到訊號,適合將此平台應用於新型的帕金森氏症治療的動物實驗模型,例如重複性經顱磁刺激(repetitive transcranial magnetic stimulation , rTMS)的評估。

    Parkinson’s disease (PD) is known related to dopamine (DA) depletion which is an important neurotransmitter linking to psychosis and locomotion modulation in the biological system. Knowing the DA level of animal’s brain could provide a direct evidence for evaluating novel treatments for PD, especially in the acute or long-term studies. The aims of this study are to develop DA sensing microelectrodes and their in-vitro and acute in-vivo validation. Among various DA sensing techniques, there are many advantages for applying electrochemical techniques to DA detection, including good temporal resolution and easy to minimize but they also have some critical hinders mainly the sensitivity to low DA level and specificity to various other electrochemical substances in the brain.
    In this study, the designed sensing microelectrode was coated gold nanoparticles (Au-NPs) by electrodeposition and self-assembled the 11-mercaptoundecanoic acid (MUA) and 3-mercaptopropionic acid (MPA) to enhance its sensitivity and selectivity. For in vitro verification test, the Au-NPs-MPA modified microelectrodes exhibited an oxidation potential of DA at 0.28 V with a low detection limit below 100 nM. Moreover, the modified microelectrodes have effectively eliminated electronegative species, such as ascorbic acid, AA, the major interference to DA in the brain. For in-vivo validation, the DA secretion can be evoked by pharmacological and electrical stimulation. The recording microelectrodes were implanted in striatum of the rat brain under anesthesia condition and the stimulation electrodes were applied with bipolar waveforms to stimulate in medial forebrain bundle (MFB). Stimulation parameters were set at 100 Hz frequency, 300 μA intensity, 1 sec stimulating period and 30 sec resting interval. Following the stimulation, the recorded signal rose abruptly and fell gradually, lasting about 5~10 sec before returned to the baseline. Moreover, responsive currents exhibited a positive trend correlated to the higher stimulating intensity and frequency. In addition, the in-vivo sensing of DA was also validated by administration of L-DOPA which also increased the DA release in anesthesia rat but required 3 hours to response.
    In conclusion, the platform for monitoring the DA level in anesthesia rat using Au-NPs-MPA modified microelectrodes with high sensitivity and selectivity has been successfully verified in electrical or L-DOPA intervention. The established platform and animal model are quite suitable for the implantation electrochemical sensing microelectrode for acute or long-term morning of DA level to evaluate the effect of various novel therapies, in our case repetitive transcranial magnetic stimulation (rTMS) for PD rat.

    中文摘要 i Abstract ii 誌謝 iv Contents v List of Tables vii List of Figures vii Chapter 1 Introduction 1 1.1 Introduction of Parkinson’s disease and management 1 1.2 Introduction to electrochemistry and measurement Techniques 3 1.2.1 The principle of redox reaction on electroanalytical sensors 3 1.2.2 Electrochemical techniques 4 1.2.2.1 Voltammetry 5 1.2.2.2 Amperometry 7 1.2.3 Electrochemical Methods for in-vivo measurement 9 1.3 Neurophysiology of detectable neurotransmitter dopamine 10 1.4 Factors affecting dopamine release in rat brain 13 1.4.1 Extracellular regulation of dopamine with medicine administration 13 1.4.2 Effects of dopamine level with electrical stimulation 14 1.5 Motivation and the aims of this study 15 Chapter 2 Materials and Methods 17 2.1 Preparation of DA sensing electrode 17 2.2 Evaluation of sensitivity and selectivity for microelectrode 18 2.3 Micro-electrical stimulator and stimulating electrode 19 2.4 Animal preparation and surgical procedure 21 2.5 Experimental design for in-vivo DA recordings 22 2.5.1 Evoked dopamine release with electrical stimulation 23 2.5.2 Regulation of dopamine with drug administration 23 2.6 Signal processing and data analysis 24 Chapter 3 Results 25 3.1 In-vitro assessment of DA sensing microelectrode 25 3.2 Validation of electrical micro-stimulator 30 3.3 In-vivo DA measurement 31 3.3.1 In-vivo DA sensing under electrical stimulation approach 31 3.3.2 DA sensing under drug administration approach 35 Chapter 4 Discussion 36 4.1 Electrochemical characteristics of Au-NPs-MUP microelectrode 36 4.2 The relationship between responsive DA and neuroanatomy 38 4.3 The evoked DA release with different parameters of electrical stimulation 38 4.4 Drug administration with L-DOPA 40 Chapter 5 Conclusion and Future Works 41 References 42 Appendix A 47

    Abercrombie, E.D., Bonatz, A.E., and Zigmond, M.J. 1990. Effects of L-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Research 525: 36-44.

    Adams, R.N. 1978. In vivo electrochemical recording -- a new neurophysiological approach. Trends in Neurosciences 1: 160-163.

    Bard, A.J., and Faulkner, L.R. 2001. Electrochemical Methods: Fundamentals and Applications. 2nd ed. John Wiley, New York.

    Deuschl, G. et al. 2006. A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease. New England Journal of Medicine 355: 896-908.

    Emborg, M.E. 2004. Evaluation of animal models of Parkinson's disease for neuroprotective strategies. Journal of Neuroscience Methods 139: 121-143.

    Ewing, A.G., Dayton, M.A., and Wightman, R.M. 1981. Pulse voltammetry with microvoltammetric electrodes. Analytical Chemistry 53: 1842-1847.

    Garris, P., Ciolkowski, E., Pastore, P., and Wightman, R. 1994. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. Journal of Neuroscience 14: 6084-6093.

    Garris, P.A., Walker, Q.D., and Wightman, R.M. 1997. Dopamine release and uptake rates both decrease in the partially denervated striatum in proportion to the loss of dopamine terminals. Brain Research 753: 225-234.

    Gerhardt, G.A., Oke, A.F., Nagy, G., Moghaddam, B., and Adams, R.N. 1984. Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Research 290: 390-395.

    Gonon, F., Buda, M., Cespuglio, R., and Jouvet, M. 1981. Voltammetry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid. Brain Research 223: 69-80.

    Gonon, F.G., Navarre, F., and Buda, M.J. 1984. In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Analytical Chemistry 56: 573-575.

    Gonon, F.G., Buda, M., Cespuglio, R., Jouvet, M., and Pujol, J. 1980. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature 286: 902-904.

    Johnson, M.D., Franklin, R.K., Gibson, M.D., Brown, R.B., and Kipke, D.R. 2008. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. Journal of Neuroscience Methods 174: 62-70.

    Justice, J.B. 1987. Voltammetry in the neurosciences: principles, methods, and applications. Contemporary neuroscience, pp. 3- 25, Humana Press, Clifton, N.J.

    Kawagoe, K.T., Zimmerman, J.B., and Wightman, R.M. 1993. Principles of voltammetry and microelectrode surface states. Journal of Neuroscience Methods 48: 225-240.

    Kissinger, P.T., Hart, J.B., and Adams, R.N. 1973. Voltammetry in brain tissue -- a new neurophysiological measurement. Brain Research 55: 209-213.

    Krulic, D., Fatouros, N., and Chevalet, J. 1990. Multiple square wave voltammetry: experimental verification of the theory. Journal of Electroanalytical Chemistry 287: 215-227.

    Kuhr, W.G., Ewing, A.G., Caudill, W.L., and Wightman, R.M. 1984. Monitoring the Stimulated Release of Dopamine with In Vivo Voltammetry. I: Characterization of the Response Observed in the Caudate Nucleus of the Rat. Journal of Neurochemistry 43: 560-569.

    Luczak, T. 2008. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta 53: 5725-5731.

    MediTouch Company Limited. [Internet] Library: Parkinson's disease. [cited 2010 June 23]. Available from http://www.meditouch.co.il/index.php?page=library&lib=06

    Michael, A.C., and Borland, L.M. 2007. Electrochemical methods for neuroscience. pp. 1- 15 and pp. 35-47, CRC Press, Boca Raton.

    Millar, J., Stamford, J.A., Kruk, Z.L., and Wightman, R. 1985. Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. European Journal of Pharmacology 109: 341-348.

    Montague, P.R., McClure, S.M., Baldwin, P.R., Phillips, P.E.M., Budygin, E.A., Stuber, G.D., Kilpatrick, M.R., and Wightman, R.M. 2004. Dynamic Gain Control of Dopamine Delivery in Freely Moving Animals. Journal of Neuroscience 24: 1754-1759.

    Nakazato, T., and Akiyama, A. 1992. Decarboxylation of Exogenous l-3,4-Dihydroxyphenylalanine in Rat Striatum as Studied by In Vivo Voltammetry. Journal of Neurochemistry 58: 121-127.

    Nakazato, T., and Akiyama, A. 1999. High-speed voltammetry: dual measurement of dopamine and serotonin. Journal of Neuroscience Methods 89: 105-110.

    Nicolaysen, L.C., Ikeda, M., Justice, J.B., and Neill, D.B. 1988. Dopamine release at behaviorally relevant parameters of nigrostriatal stimulation: effects of current and frequency. Brain Research 460: 50-59.

    Obeso, J.A., Rodriguez-Oroz, M., Marin, C., Alonso, F., Zamarbide, I., Lanciego, J.L., and Rodriguez-Diaz, M. 2004. The origin of motor fluctuations in Parkinson's disease: Importance of dopaminergic innervation and basal ganglia circuits. Neurology 62: 17S-30.

    O'Neill, R.D. 1994. Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. Analyst 119: 767-779.

    Pascual-Leone, A., Valls-Sole, J., Wassermann, E.M., and Hallett, M. 1994. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117: 847-858.

    Phillips, P.E.M., and Wightman, R.M. 2003. Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. TrAC Trends in Analytical Chemistry 22: 509-514.

    Pothos, E.N., Davila, V., and Sulzer, D. 1998. Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size. Journal of Neuroscience 18: 4106-4118.

    Robinson, D.L., Hermans, A., Seipel, A.T., and Wightman, R.M. 2008. Monitoring Rapid Chemical Communication in the Brain. Chemical Reviews 108: 2554-2584.

    Rodríguez, M., Morales, I., González-Mora, J., Gómez, I., Sabaté, M., Dopico, J., Rodríguez-Oroz, M., and Obeso, J. 2007. Different levodopa actions on the extracellular dopamine pools in the rat striatum. Synapse 61: 61-71.

    Rogers, M.W. 1996. Disorders of posture, balance, and gait in Parkinson's disease. Clinics in Geriatric Medicine 12: 825-845.

    Serna, C., Molina, A., Camacho, L., and Ruiz, J.J. 1993. Triple-pulse voltammetry and polarography. Analytical Chemistry 65: 215-222.

    Stamford, J.A. 1986. In vivo voltammetry: Some methodological considerations. Journal of Neuroscience Methods 17: 1-29.

    Suaud-Chagny, M.F., Dugast, C., Chergui, K., and Msghina, M. 1995. Uptake of Dopamine Released by Impulse Flow in the Rat Mesolimbic and Striatal Systems In Vivo. Journal of Neurochemistry 65: 2603-2611.

    Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., and Papadimitrakopoulos, F. 2010. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosensors and Bioelectronics 25: 1553-1565.

    Vitek, J.L. 2002. Deep brain stimulation for Parkinson's disease. A critical re-evaluation of STN versus GPi DBS. Stereotactic and Functional Neurosurgery 78: 119-131.

    Wang, P., Li, Y., Huang, X., and Wang, L. 2007. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73: 431-437.

    Wightman, R.M., Strope, E., Plotsky, P.M., and Adams, R.N. 1976. Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature 262: 145-146.

    Wilson, G.S., and Johnson, M.A. 2008. In-Vivo Electrochemistry: What Can We Learn about Living Systems? Chemical Reviews 108: 2462-2481.

    You, Z.B., Goiny, M., Meana, J.J., Sliveira, Godukhin, O.V., Chen, Y., Espinoza, S., Pettersson, E., Loidl, C.F., Lubec, G., Andersson, K., Nylander, I., Terenius, L., Ungerstedt, U. 1996. On the Origin of Extracellular Glutamate Levels Monitored in the Basal Ganglia of the Rat by In Vivo Microdialysis. Journal of Neurochemistry 66: 1726-1735.

    下載圖示 校內:2013-08-30公開
    校外:2015-08-30公開
    QR CODE