簡易檢索 / 詳目顯示

研究生: 周怡甄
Chou, Yi-Chen
論文名稱: 探討 MakeCode 平台中回饋機制對初學者程式教育學習動機與自我效能的影響
Exploring the Impact of Feedback Mechanisms in the MakeCode Platform on Novice Learners' Learning Motivation and Self-Efficacy in Programming Education
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 126
中文關鍵詞: MakeCode回饋機制程式教育學習動機自我效能
外文關鍵詞: MakeCode, Feedback Mechanisms, Programming Education, Learning Motivation, Self-Efficacy
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位轉型發展,程式設計已成為各領域重要的數位素養核心能力,涵蓋邏輯思維、問題解決與跨領域應用等關鍵技能。對非資訊背景參與者而言,學習程式設計時常因語法理解、邏輯推理與錯誤修正等挑戰,導致挫折感、信心不足及學習動機下降,影響學習成效與持續性。為降低學習門檻,視覺化程式設計工具如 MakeCode 被廣泛應用,可協助初學者掌握程式邏輯概念與操作流程,惟在錯誤排除與概念整合歷程中仍存在困難。回饋機制被視為提升學習成效的重要教學策略,透過即時與具體的指引,協助參與者釐清問題來源、調整學習策略並強化自我效能。然而,針對不同回饋型態應用於非資訊背景初學者之實證研究仍相對有限,特別缺乏整合學習歷程數據進行系統性探討。
    本研究採準實驗設計,探討形成性與總結性回饋對程式學習成效之影響,透過程式教育任務分析系統(Programming Education Task Analysis System, PETAS),用以記錄與分析學習歷程行為數據。26 位非資訊相關背景且具備基本電腦操作能力初學者隨機分派至兩組,課程以 MakeCode 平台與 Maqueen 自走車進行五項任務。學習成效評量包含程式邏輯能力、學習動機與電腦自我效能之前後測,並輔以操作行為數據進行綜合分析。
    研究結果顯示,PETAS 可穩定紀錄行為數據並支持教學診斷。總結性回饋組在程式邏輯能力後測表現顯著優於形成性回饋組,顯示整體性回饋有助於推理與統整能力發展;學習動機與電腦自我效能則於短期介入下無顯著差異。本研究驗證回饋機制應用成效,並確認 PETAS 於學習分析之可行性,結果可供課程設計與教學優化之參考。

    With the advancement of digital transformation, programming has become a core digital competence across fields, involving logical reasoning, problem-solving, and interdisciplinary applications. Beginners with non-computer-related backgrounds and basic computer operation skills often face challenges in syntax, logic, and error correction, affecting confidence and motivation. Visual tools like MakeCode lower learning barriers and support logic acquisition, yet difficulties in debugging and conceptual integration persist. Feedback mechanisms provide timely guidance for problem-solving and self-efficacy. However, empirical studies on feedback types for novice learners with non-computer-related backgrounds remain limited, especially those integrating process data.
    This quasi-experimental study examined formative and summative feedback effects using the Programming Education Task Analysis System (PETAS) for behavior data analysis. 26 beginners with non-computer-related backgrounds and basic computer operation skills were randomly assigned to two groups. The intervention included five tasks via MakeCode and Maqueen robot. Outcomes were assessed through pre- and post-tests of Programming Logic Ability Test, Learning Motivation Scale, and Computer Self-Efficacy Scale, combined with behavioral data.
    Results indicated PETAS effectively recorded behavior data for analysis. The summative feedback group outperformed the formative group in programming logic ability post-tests, suggesting comprehensive feedback improved reasoning and integration. No significant group differences were found in learning motivation and computer self-efficacy. This study confirms feedback mechanism effects and demonstrates PETAS’s value for learning analytics, offering insights for instructional design.

    摘要 I Extended Abstract II 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 壹、緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 研究目的與問題 7 貳、文獻探討 9 2.1 視覺化程式設計與 MakeCode 平台 9 2.1.1 視覺化程式設計的教育價值 9 2.1.2 MakeCode 平台的特點與功能 11 2.1.3 MakeCode 在初學者程式教育中的應用 14 2.2 程式教育中的回饋機制 16 2.2.1 回饋機制對程式教育的影響 16 2.2.2 形成性回饋 18 2.2.3 總結性回饋 19 2.3 程式教育之學習動機與自我效能 21 2.3.1 學習動機的理論架構 21 2.3.2 自我效能的理論架構 23 2.4 學習分析在程式教育中的應用 26 2.4.1 學習分析的理論架構 26 2.4.2 學習分析的數據收集與應用 27 參、研究方法 30 3.1 實驗對象 30 3.2 實驗設計 30 3.3 程式教育任務分析系統(PETAS) 36 3.3.1 教師端系統 37 3.3.2 學生端系統 43 3.4 研究工具 48 3.4.1 程式邏輯能力測驗 48 3.4.2 學習動機量表 48 3.4.3 電腦自我效能量表 49 3.5 資料分析 49 肆、研究結果 51 4.1 PETAS 數據收集結果 51 4.2 程式邏輯能力 52 4.3 學習動機 54 4.4 電腦自我效能 56 伍、討論 58 5.1 程式教育任務分析系統(PETAS)的數據收集效果 58 5.2 形成性回饋與總結性回饋對程式邏輯能力的影響 59 5.3 形成性回饋與總結性回饋對初學者學習動機的影響 60 5.4 形成性回饋與總結性回饋對初學者電腦自我效能的影響 61 陸、結論與未來展望 63 6.1 結論 63 6.2 研究限制 64 6.3 未來展望 65 參考文獻 66 附錄 86 附錄一、程式邏輯能力前測驗 86 附錄二、程式邏輯能力後測驗 91 附錄三、學習動機量表 95 附錄四、電腦自我效能量表 96 附錄五、課程前置作業和任務說明 97 附錄六、參與研究意願同意書 107

    Abidi, N., El Herradi, M., & Sakha, S. (2023). Digitalization and resilience during the COVID-19 pandemic. Telecommunications Policy, 47(4), 102522. https://doi.org/10.1016/j.telpol.2023.102522
    Afrin, S., Roksana, S., & Akram, R. (2025). AI-Enhanced Robotic Process Automation: A Review of Intelligent Automation Innovations. IEEE Access, 13, 173-197. https://doi.org/10.1109/ACCESS.2024.3513279
    Ahmad, N., Noorani, Z., & Sewani, R. (2025). Exploring Feedback and Assessment Practices: Perspectives from Prospective Teachers. The Critical Review of Social Sciences Studies, 3(1), 953-966. https://doi.org/10.59075/c39z2h90
    Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging among novice computer science students Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education, Caparica, Portugal. https://doi.org/10.1145/1067445.1067472
    Ali, N., Khurma, O. A., Alzouebi, K., Jarrah, A., Khine, M. S., Albahti, F., & AlShannag, Q. (2025). Digital Skills and Science Achievement: Analyzing Socio-Economic Factors and Learning Views. Educational Process: International Journal. https://doi.org/10.22521/edupij.2025.15.120
    Amiryousefi, M., & Geld, R. (2021). The role of redressing teachers’ instructional feedback interventions in EFL learners’ motivation and achievement in distance education. Innovation in Language Learning and Teaching, 15(1), 13-25. https://doi.org/10.1080/17501229.2019.1654482
    Andersen, R., Mørch, A. I., & Litherland, K. T. (2022). Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education. Behaviour & Information Technology, 41(9), 1830-1847. https://doi.org/10.1080/0144929X.2022.2083981
    Andriole, S. J. (2018). Skills and Competencies for Digital Transformation. IT Professional, 20(6), 78-81. https://doi.org/10.1109/MITP.2018.2876926
    Arslan Namli, N., & Aybek, B. (2022). An Investigation of the Effect of Block-Based Programming and Unplugged Coding Activities on Fifth Graders' Computational Thinking Skills, Self-Efficacy and Academic Performance. Contemporary Educational Technology, 14(1), ep341. https://doi.org/10.30935/cedtech/11477
    Asad, M. M., Erum, D., Churi, P., & Moreno Guerrero, Antonio J. (2023). Effect of technostress on Psychological well-being of post-graduate students: A perspective and correlational study of Higher Education Management. International Journal of Information Management Data Insights, 3(1), 100149. https://doi.org/10.1016/j.jjimei.2022.100149
    Austin, J., Baker, H., Ball, T., Devine, J., Finney, J., Halleux, P. D., Hodges, S., Moskal, M., & Stockdale, G. (2020). The BBC micro:bit: from the U.K. to the world. Commun. ACM, 63(3), 62–69. https://doi.org/10.1145/3368856
    Ball, T., Chatra, A., Halleux, P. d., Hodges, S., Moskal, M., & Russell, J. (2019). Microsoft MakeCode: embedded programming for education, in blocks and TypeScript Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E, Athens, Greece. https://doi.org/10.1145/3358711.3361630
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
    Banihashem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. A. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. Educational Research Review, 37, 100489. https://doi.org/10.1016/j.edurev.2022.100489
    Bedgood, R. M., Elizabeth, A. S., Busch, C. K., Michael, W. J., Shahid, M. M., & and Pajerowska-Mukhtar, K. M. (2025). PlantGIFT: An Effective Teacher Workshop Model for Translating Experimental STEM Research into Hands-on Classroom Activities for Middle and High School Students. Journal of College Science Teaching, 54(2), 181-188. https://doi.org/10.1080/0047231X.2024.2412671
    Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using Learning Analytics to Understand the Learning Pathways of Novice Programmers. Journal of the Learning Sciences, 22(4), 564-599. https://doi.org/10.1080/10508406.2013.836655
    Black, P., & Wiliam, D. (1998). Assessment and Classroom Learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7-74. https://doi.org/10.1080/0969595980050102
    Boom, K.-D., Bower, M., Siemon, J., & Arguel, A. (2022). Relationships between computational thinking and the quality of computer programs. Education and Information Technologies, 27(6), 8289-8310. https://doi.org/10.1007/s10639-022-10921-z
    Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada,
    Buckley, P., & Doyle, E. (2016). Gamification and student motivation. Interactive Learning Environments, 24(6), 1162-1175. https://doi.org/10.1080/10494820.2014.964263
    Buehler, R., Peetz, J., & Griffin, D. (2010). Finishing on time: When do predictions influence completion times? Organizational Behavior and Human Decision Processes, 111(1), 23-32. https://doi.org/10.1016/j.obhdp.2009.08.001
    Cafarella, L., & Vasconcelos, L. (2024). Computational thinking with game design: An action research study with middle school students. Education and Information Technologies. https://doi.org/10.1007/s10639-024-13010-5
    Çakıroğlu, Ü., & Muştu, E. (2025). Mathematical Thinking behind Coding: Promoting Generalization Skills via Scratch. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-025-10556-9
    Carless, D. (2006). Differing perceptions in the feedback process. Studies in Higher Education, 31(2), 219-233. https://doi.org/10.1080/03075070600572132
    Carless, D., & Boud, D. (2018). The development of student feedback literacy: enabling uptake of feedback. Assessment & Evaluation in Higher Education, 43(8), 1315-1325. https://doi.org/10.1080/02602938.2018.1463354
    Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming course: a learning theoretic approach Proceedings of the third international workshop on Computing education research, Atlanta, Georgia, USA. https://doi.org/10.1145/1288580.1288595
    Chan, C. K. Y., & Luo, J. (2022). Exploring teacher perceptions of different types of ‘feedback practices’ in higher education: implications for teacher feedback literacy. Assessment & Evaluation in Higher Education, 47(1), 61-76. https://doi.org/10.1080/02602938.2021.1888074
    Chen, D. (2023). Toward an understanding of 21st-century skills: From a systematic review. International Journal for Educational and Vocational Guidance, 23(2), 275-294. https://doi.org/10.1007/s10775-021-09511-1
    Chen, T.-I., Lin, S.-K., & Chung, H.-C. (2023). Gamified Educational Robots Lead an Increase in Motivation and Creativity in STEM Education. Journal of Baltic Science Education, 22(3), 427-438. https://doi.org/10.33225/jbse/23.22.427
    Cho, K., Bang, S. J., & Anwar, S. (2023, 2023/06/25). A Blended Approach to Design an Introductory Programming Course for Non-CS Majors: Students’ Feedback Baltimore , Maryland. https://peer.asee.org/42349
    Chou, C.-Y., & Zou, N.-B. (2020). An analysis of internal and external feedback in self-regulated learning activities mediated by self-regulated learning tools and open learner models. International Journal of Educational Technology in Higher Education, 17(1), 55. https://doi.org/10.1186/s41239-020-00233-y
    Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 19(2), 189-211. https://doi.org/10.2307/249688
    Cooper, L. A., Holderness, D. K., Jr., Sorensen, T. L., & Wood, D. A. (2019). Robotic Process Automation in Public Accounting. Accounting Horizons, 33(4), 15-35. https://doi.org/10.2308/acch-52466
    Crisp, B. R. (2007). Is it worth the effort? How feedback influences students’ subsequent submission of assessable work. Assessment & Evaluation in Higher Education, 32(5), 571-581. https://doi.org/10.1080/02602930601116912
    Devine, J., Finney, J., de Halleux, P., Moskal, M., Ball, T., & Hodges, S. (2019). MakeCode and CODAL: Intuitive and efficient embedded systems programming for education. Journal of Systems Architecture, 98, 468-483. https://doi.org/10.1016/j.sysarc.2019.05.005
    Devine, J., Finney, J., Halleux, P. d., Moskal, M., Ball, T., & Hodges, S. (2018). MakeCode and CODAL: intuitive and efficient embedded systems programming for education Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, Philadelphia, PA, USA. https://doi.org/10.1145/3211332.3211335
    Dodoo, E. R., Nelson-Fromm, T., & Guzdial, M. (2025). Teaching Computing to K-12 Emergent Bilinguals: Identified Challenges and Opportunities Proceedings of the 56th ACM Technical Symposium on Computer Science Education V. 1, Pittsburgh, PA, USA. https://doi.org/10.1145/3641554.3701889
    Duncan, T. G., & McKeachie, W. J. (2005). The making of the motivated strategies for learning questionnaire. Educational Psychologist, 40(2), 117-128. https://doi.org/10.1207/s15326985ep4002_6
    Durak, H. Y., Yilmaz, F. G. K., & Yilmaz, R. (2019). Computational Thinking, Programming Self-Efficacy, Problem Solving and Experiences in the Programming Process Conducted with Robotic Activities. Contemporary Educational Technology, 10(2), 173-197. https://doi.org/10.30935/cet.554493
    Er, E., Dimitriadis, Y., & Gašević, D. (2021). Collaborative peer feedback and learning analytics: theory-oriented design for supporting class-wide interventions. Assessment & Evaluation in Higher Education, 46(2), 169-190. https://doi.org/10.1080/02602938.2020.1764490
    Espinal, A., Vieira, C., & Guerrero-Bequis, V. (2023). Student ability and difficulties with transfer from a block-based programming language into other programming languages: a case study in Colombia. Computer science education, 33(4), 567-599. https://doi.org/10.1080/08993408.2022.2079867
    Evans, C. (2013). Making Sense of Assessment Feedback in Higher Education. Review of Educational Research, 83(1), 70-120. https://doi.org/10.3102/0034654312474350
    Fakhri, M. M., Ansari Saleh, A., Rosidah, R., Fadhilatunisa, D., & Tabash, M. (2024). Barriers to Effective Learning: Examining the Influence of Delayed Feedback on Student Engagement and Problem Solving Skills in Ubiquitous Learning Programming. Journal of Applied Science, Engineering, Technology, and Education, 6(1), 69-79. https://doi.org/10.35877/454RI.asci2825
    Finn, B., Thomas, R., & Rawson, K. A. (2018). Learning more from feedback: Elaborating feedback with examples enhances concept learning. Learning and Instruction, 54, 104-113. https://doi.org/10.1016/j.learninstruc.2017.08.007
    Gao, Z., Yan, H., Liu, J., Zhang, X., Lin, Y., Zhang, Y., Sun, X., & Feng, J. (2025). Tracing distinct learning trajectories in introductory programming course: a sequence analysis of score, engagement, and code metrics for novice computer science vs. math cohorts. International Journal of STEM Education, 12(1), 27. https://doi.org/10.1186/s40594-025-00546-2
    Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://doi.org/10.1007/s11528-014-0822-x
    Grawemeyer, B., Halloran, J., England, M., & Croft, D. (2022). Feedback and Engagement on an Introductory Programming Module Proceedings of the 6th Conference on Computing Education Practice, Durham, United Kingdom. https://doi.org/10.1145/3498343.3498348
    Grover, S., & Pea, R. (2013). Computational Thinking in K–12:A Review of the State of the Field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189x12463051
    Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program. Commun. ACM, 45(4), 17–21. https://doi.org/10.1145/505248.505261
    Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/10.3102/003465430298487
    Higgins, R., Hartley, P., & Skelton, A. (2001). Getting the Message Across: The problem of communicating assessment feedback. Teaching in Higher Education, 6(2), 269-274. https://doi.org/10.1080/13562510120045230
    Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? Educational Psychology Review, 16(3), 235-266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
    Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57(4), 542-570. https://doi.org/10.1111/ejed.12533
    Hsu, I. Y., & Tsai, F.-H. (2023). Development and Evaluation of a Physical Computing Game-Design Project for Students’ Computational Thinking. Educational Technology & Society, 26(4), 38-50. https://doi.org/10.30191/ETS.202310_26(4).0003
    Hu, L. (2024). Programming and 21st century skill development in K-12 schools: A multidimensional meta-analysis. Journal of Computer Assisted Learning, 40(2), 610-636. https://doi.org/10.1111/jcal.12904
    Huang, C. L., Fu, L., Hung, S.-C., & Yang, S. C. (2025). Effect of Visual Programming Instruction on Students' Flow Experience, Programming Self-Efficacy, and Sustained Willingness to Learn. Journal of Computer Assisted Learning, 41(1), e13110. https://doi.org/10.1111/jcal.13110
    Jenkins, T. (2001). The motivation of students of programming Proceedings of the 6th annual conference on Innovation and technology in computer science education, Canterbury, United Kingdom. https://doi.org/10.1145/377435.377472
    Jeuring, J., Keuning, H., Marwan, S., Bouvier, D., Izu, C., Kiesler, N., Lehtinen, T., Lohr, D., Peterson, A., & Sarsa, S. (2022). Towards Giving Timely Formative Feedback and Hints to Novice Programmers Proceedings of the 2022 Working Group Reports on Innovation and Technology in Computer Science Education, Dublin, Ireland. https://doi.org/10.1145/3571785.3574124
    Kai, L., Wenxin, L., Ran, Z., Suihua, K., Dazhu, Y., Min, Z., & Wenhong, T. (2022, 16-18 Dec. 2022). Research on "AI+RPA" Interactive Technology of Intelligent Financial Management Platform. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP),
    Kazemitabaar, M., Chyhir, V., Weintrop, D., & Grossman, T. (2023). Scaffolding Progress: How Structured Editors Shape Novice Errors When Transitioning from Blocks to Text Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, Toronto ON, Canada. https://doi.org/10.1145/3545945.3569723
    Keuning, H., Jeuring, J., & Heeren, B. (2018). A Systematic Literature Review of Automated Feedback Generation for Programming Exercises. ACM Trans. Comput. Educ., 19(1), Article 3. https://doi.org/10.1145/3231711
    Keys, B., & Zhang, Y. (2020). Introducing RPA in an Undergraduate AIS Course: Three RPA Exercises on Process Automations in Accounting. Journal of Emerging Technologies in Accounting, 17(2), 25-30. https://doi.org/10.2308/jeta-2020-033
    Kiesler, N., Lohr, D., & Keuning, H. (2023, 18-21 Oct. 2023). Exploring the Potential of Large Language Models to Generate Formative Programming Feedback. 2023 IEEE Frontiers in Education Conference (FIE),
    Kinnunen, P., & Simon, B. (2012). My program is ok–am I? Computing freshmen's experiences of doing programming assignments. Computer science education, 22(1), 1-28. https://doi.org/10.1080/08993408.2012.655091
    Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with Robotic Process Automation. International Journal of Accounting Information Systems, 35, 100431. https://doi.org/10.1016/j.accinf.2019.100431
    Kruger, J., & Evans, M. (2004). If you don't want to be late, enumerate: Unpacking reduces the planning fallacy. Journal of Experimental Social Psychology, 40(5), 586-598. https://doi.org/10.1016/j.jesp.2003.11.001
    Lee, H.-Y., Lin, C.-J., Wang, W.-S., Chang, W.-C., & Huang, Y.-M. (2023). Precision education via timely intervention in K-12 computer programming course to enhance programming skill and affective-domain learning objectives. International Journal of STEM Education, 10(1), 52. https://doi.org/10.1186/s40594-023-00444-5
    Lee, M. J., & Ko, A. J. (2012, 30 Sept.-4 Oct. 2012). Investigating the role of purposeful goals on novices' engagement in a programming game. 2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
    Lim, L.-A., Gentili, S., Pardo, A., Kovanović, V., Whitelock-Wainwright, A., Gašević, D., & Dawson, S. (2021). What changes, and for whom? A study of the impact of learning analytics-based process feedback in a large course. Learning and Instruction, 72, 101202. https://doi.org/10.1016/j.learninstruc.2019.04.003
    Liu, H., Wu, Z., Lu, Y., & Zhu, L. (2023). Exploring the Balance Between Computational Thinking and Learning Motivation in Elementary Programming Education: An Empirical Study With Game-Based Learning. IEEE Transactions on Games, 15(1), 95-107. https://doi.org/10.1109/TG.2022.3143701
    Loksa, D., Margulieux, L., Becker, B. A., Craig, M., Denny, P., Pettit, R., & Prather, J. (2022). Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use. ACM Trans. Comput. Educ., 22(4), Article 39. https://doi.org/10.1145/3487050
    Louis, F., Jennifer, K. O., Stian, H., & Pierre, D. (2020). Real-Time Prediction of Students' Activity Progress and Completion Rates. Journal of Learning Analytics, 7(2), 18-44. https://doi.org/10.18608/jla.2020.72.2
    Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
    Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment. ACM Trans. Comput. Educ., 10(4), Article 16. https://doi.org/10.1145/1868358.1868363
    McGill, M. M. (2012). Learning to Program with Personal Robots: Influences on Student Motivation. ACM Trans. Comput. Educ., 12(1), Article 4. https://doi.org/10.1145/2133797.2133801
    Messer, M., Brown, N. C. C., Kölling, M., & Shi, M. (2024). Automated Grading and Feedback Tools for Programming Education: A Systematic Review. ACM Trans. Comput. Educ., 24(1), Article 10. https://doi.org/10.1145/3636515
    Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions in block-based and text-based programming languages at the K-12 level. Education and Information Technologies, 23(4), 1483-1500. https://doi.org/10.1007/s10639-017-9673-3
    Mulliner, E., & Tucker, M. (2017). Feedback on feedback practice: perceptions of students and academics. Assessment & Evaluation in Higher Education, 42(2), 266-288. https://doi.org/10.1080/02602938.2015.1103365
    Nicol, D. (2010). From monologue to dialogue: improving written feedback processes in mass higher education. Assessment & Evaluation in Higher Education, 35(5), 501-517. https://doi.org/10.1080/02602931003786559
    Nicol, D. J., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: a model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199-218. https://doi.org/10.1080/03075070600572090
    Noone, M., & Mooney, A. (2018). Visual and textual programming languages: a systematic review of the literature. Journal of Computers in Education, 5(2), 149-174. https://doi.org/10.1007/s40692-018-0101-5
    Orhani, S., & Babuna, E. (2024). STIMULATING STUDENTS FOR LEARNING THROUGH THE MAQUEEN ROBOT. 06(03). https://doi.org/10.56726/IRJMETS51034
    Ortiz-Rojas, M., Chiluiza, K., Valcke, M., & Bolanos-Mendoza, C. (2025). How gamification boosts learning in STEM higher education: a mixed methods study. International Journal of STEM Education, 12(1), 1. https://doi.org/10.1186/s40594-024-00521-3
    Ou Yang, F.-C., Lai, H.-M., & Wang, Y.-W. (2023). Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Computers & Education, 195, 104721. https://doi.org/10.1016/j.compedu.2022.104721
    Paiva, J. C., Figueira, Á., & Leal, J. P. (2023). Bibliometric Analysis of Automated Assessment in Programming Education: A Deeper Insight into Feedback. Electronics, 12(10), 2254. https://doi.org/10.3390/electronics12102254
    Papert, S. (1980). Children, computers and powerful ideas. Harvester Press (Unitend Kingdom). DOI, 10, 978-973.
    Pardo, A. (2018). A feedback model for data-rich learning experiences. Assessment & Evaluation in Higher Education, 43(3), 428-438. https://doi.org/10.1080/02602938.2017.1356905
    Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback. British Journal of Educational Technology, 50(1), 128-138. https://doi.org/10.1111/bjet.12592
    Phung, T., Cambronero, J., Gulwani, S., Kohn, T., Majumdar, R., Singla, A., & Soares, G. (2023). Generating high-precision feedback for programming syntax errors using large language models. arXiv preprint arXiv:2302.04662. https://doi.org/10.48550/arXiv.2307.00150
    Pintrich, P. R. (2003). A Motivational Science Perspective on the Role of Student Motivation in Learning and Teaching Contexts. Journal of Educational Psychology, 95(4), 667-686. https://doi.org/10.1037/0022-0663.95.4.667
    Porto-Bellini, C. G., Serpa, M. L., & Pereira, R. d. C. d. F. (2025). Computer Self-Efficacy and Reactions to Feedback: Reopening the Debate in an Interpretive Experiment with Overconfident Students. Behavioral Sciences, 15(4), 511. https://doi.org/10.3390/bs15040511
    Price, M., Handley, K., Millar, J., & O'Donovan, B. (2010). Feedback : all that effort, but what is the effect? Assessment & Evaluation in Higher Education, 35(3), 277-289. https://doi.org/10.1080/02602930903541007
    Priyono, A., Moin, A., & Putri, V. N. A. O. (2020). Identifying Digital Transformation Paths in the Business Model of SMEs during the COVID-19 Pandemic. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 104. https://doi.org/10.3390/joitmc6040104
    Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school students’ reasoning skills and mathematical self-efficacy and problem solving. Instructional Science, 45(5), 583-602. https://doi.org/10.1007/s11251-017-9421-5
    Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to program Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science education, Leeds, United Kingdom. https://doi.org/10.1145/1007996.1008042
    Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Commun. ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779
    Rizvi, A., & Srivastava, N. (2023). Exploring the Potentials of Robotic Process Automation: A Review. Journal of Informatics Electrical and Electronics Engineering (JIEEE), 4(2), 1-12. https://doi.org/10.54060/jieee.2023.100
    Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer science education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200
    Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7-12. https://doi.org/10.18608/jla.2015.21.2
    Ruf, A., Mühling, A., & Hubwieser, P. (2014). Scratch vs. Karel: impact on learning outcomes and motivation Proceedings of the 9th Workshop in Primary and Secondary Computing Education, Berlin, Germany. https://doi.org/10.1145/2670757.2670772
    Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. https://doi.org/10.1037/0003-066X.55.1.68
    Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18(2), 119-144. https://doi.org/10.1007/BF00117714
    Salama Muhammad, I. M., Chica Tomalá, M. P., Marcial Coello, C. R., Cerón Silva, S. A., & Cerón Silva, C. d. R. (2024). Assessment methods and their impact on learning outcomes in education : Los métodos de evaluación y su impacto en los resultados del aprendizaje en la educación. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 5(5), 3336 – 3350. https://doi.org/10.56712/latam.v5i5.2865
    Sarı, U., Pektaş, H. M., Şen, Ö. F., & Çelik, H. (2022). Algorithmic thinking development through physical computing activities with Arduino in STEM education. Education and Information Technologies, 27(5), 6669-6689. https://doi.org/10.1007/s10639-022-10893-0
    Saygıner, Ş., & Tüzün, H. (2023). The effects of block-based visual and text-based programming training on students' achievement, logical thinking skills, and motivation. Journal of Computer Assisted Learning, 39(2), 644-658. https://doi.org/10.1111/jcal.12771
    Scherer, R., Siddiq, F., & Sánchez-Scherer, B. (2021). Some evidence on the cognitive benefits of learning to code [Opinion]. Frontiers in Psychology, 12, 559424. https://doi.org/10.3389/fpsyg.2021.559424
    Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. https://doi.org/10.1016/j.chb.2018.05.004
    Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x
    Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22(2), 469-495. https://doi.org/10.1007/s10639-016-9482-0
    Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017). "Creating Cool Stuff": Pupils' Experience of the BBC micro:bit Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington, USA. https://doi.org/10.1145/3017680.3017749
    Shibani, A., Knight, S., & Buckingham Shum, S. (2020). Educator perspectives on learning analytics in classroom practice. The Internet and Higher Education, 46, 100730. https://doi.org/10.1016/j.iheduc.2020.100730
    Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153-189. https://doi.org/10.3102/0034654307313795
    Solis Trujillo, B. P., Velarde-Camaqui, D., Gonzales Nuñez, C. A., Castillo Silva, E. V., & Gonzalez Said de la Oliva, M. d. P. (2025). The current landscape of formative assessment and feedback in graduate studies: a systematic literature review [Review]. Frontiers in Education, Volume 10 - 2025. https://doi.org/10.3389/feduc.2025.1509983
    Sun, L., & Liu, J. (2024). Micro: bit programming effects on elementary STEM teachers’ computational thinking and programming attitudes: a moderated mediation model. Journal of Research on Technology in Education, 1-23. https://doi.org/10.1080/15391523.2024.2402357
    Tariq, R., Aponte Babines, B. M., Ramirez, J., Alvarez-Icaza, I., & Naseer, F. (2025). Computational thinking in STEM education: current state-of-the-art and future research directions [Systematic Review]. Frontiers in Computer Science, Volume 6 - 2024. https://doi.org/10.3389/fcomp.2024.1480404
    Taxipulati, S., & Lu, H.-D. (2021). The Influence of Feedback Content and Feedback Time on Multimedia Learning Achievement of College Students and Its Mechanism [Methods]. Frontiers in Psychology, Volume 12 - 2021. https://doi.org/10.3389/fpsyg.2021.706821
    Torres, C., Correia, J., Compeau, D., & Carter, M. (2022). Computer Self Efficacy: A Replication After Thirty Years. AIS Transactions on Replication Research, 8. https://doi.org/10.17705/1atrr.00076
    Tsai, C.-Y., Chen, Y.-A., Hsieh, F.-P., Chuang, M.-H., & Lin, C.-L. (2024). Effects of a Programming Course Using the GAME Model on Undergraduates’ Self-Efficacy and Basic Programming Concepts. Journal of Educational Computing Research, 62(3), 702-724. https://doi.org/10.1177/07356331231206071
    Tuomi, P., Multisilta, J., Saarikoski, P., & Suominen, J. (2018). Coding skills as a success factor for a society. Education and Information Technologies, 23(1), 419-434. https://doi.org/10.1007/s10639-017-9611-4
    Urabe, Y., Yagi, S., Tsuchikawa, K., & Masuda, T. (2019, 18-20 Sept. 2019). Visualizing User Action Data to Discover Business Process. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS),
    Wang, C., Chen, X., Li, Y., Wang, P., Wang, H., & Li, Y. (2025). MetaClassroom: A new paradigm and experience for programming education. Journal of Educational Computing Research, 07356331251322470. https://doi.org/10.1177/07356331251322470
    Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
    Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students' perceptions of blocks-based programming Proceedings of the 14th International Conference on Interaction Design and Children, Boston, Massachusetts. https://doi.org/10.1145/2771839.2771860
    Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 142, 103646. https://doi.org/10.1016/j.compedu.2019.103646
    Wiese, J., Buehler, R., & Griffin, D. (2016). Backward planning: Effects of planning direction on predictions of task completion time. Judgment and Decision Making, 11(2), 147-167. https://doi.org/10.1017/S1930297500007269
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
    Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM Sigcse Bulletin, 28(3), 17-22. https://doi.org/10.1145/234867.234872
    Winstone, N. E., & Boud, D. (2022). The need to disentangle assessment and feedback in higher education. Studies in Higher Education, 47(3), 656-667. https://doi.org/10.1080/03075079.2020.1779687
    Winstone, N. E., Nash, R. A., Parker, M., & Rowntree, J. (2017). Supporting Learners' Agentic Engagement With Feedback: A Systematic Review and a Taxonomy of Recipience Processes. Educational Psychologist, 52(1), 17-37. https://doi.org/10.1080/00461520.2016.1207538
    Wise, A. F. (2014). Designing pedagogical interventions to support student use of learning analytics Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, Indianapolis, Indiana, USA. https://doi.org/10.1145/2567574.2567588
    Wise, A. F., & Jung, Y. (2019). Teaching with Analytics: Towards a Situated Model of Instructional Decision-Making. Journal of Learning Analytics, 6(2), 53–69. https://doi.org/10.18608/jla.2019.62.4
    Wu, T.-T., Lee, H.-Y., Wang, W.-S., Lin, C.-J., & Huang, Y.-M. (2023). Leveraging computer vision for adaptive learning in STEM education: effect of engagement and self-efficacy. International Journal of Educational Technology in Higher Education, 20(1), 53. https://doi.org/10.1186/s41239-023-00422-5
    Xinna, L., & Li, C. (2025). Integrate UiPath into Robotic Process Automation in Accounting Course Teaching. International Journal of Sociologies and Anthropologies Science Reviews, 5(1), 177-192. https://doi.org/10.60027/ijsasr.2025.5264
    Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus text-based programming environments on novice student learning outcomes: a meta-analysis study. Computer science education, 29(2-3), 177-204. https://doi.org/10.1080/08993408.2019.1565233
    Yatskiv, S., Voytyuk, I., Yatskiv, N., Kushnir, O., Trufanova, Y., & Panasyuk, V. (2019, 5-7 June 2019). Improved Method of Software Automation Testing Based on the Robotic Process Automation Technology. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT),
    Yildiz Durak, H. (2020). The Effects of Using Different Tools in Programming Teaching of Secondary School Students on Engagement, Computational Thinking and Reflective Thinking Skills for Problem Solving. Technology, Knowledge and Learning, 25(1), 179-195. https://doi.org/10.1007/s10758-018-9391-y
    Yu, J.-H., Chang, X.-Z., Liu, W., & Huan, Z. (2023). An online integrated programming platform to acquire students' behavior data for immediate feedback teaching. Computer Applications in Engineering Education, 31(3), 520-536. https://doi.org/10.1002/cae.22596
    Zainuddin, Z. (2024). Integrating ease of use and affordable gamification-based instruction into a remote learning environment. Asia Pacific Education Review, 25(5), 1261-1272. https://doi.org/10.1007/s12564-023-09832-6
    Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 103607. https://doi.org/10.1016/j.compedu.2019.103607

    無法下載圖示 校內:2030-06-05公開
    校外:2030-06-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE