簡易檢索 / 詳目顯示

研究生: 賴岦群
Lai, Li-chun
論文名稱: 發現及探討一個先天性免疫反應活化因子,TAPE
Identification and characterization of a novel innate immune regulator, called TAPE
指導教授: 凌斌
Ling, Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 48
中文關鍵詞: 先天性免疫反應
外文關鍵詞: innate immunity
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先天免疫反應(Innate immune responses),在人體免疫系統扮演第一線防禦外來病原菌入侵的重要角色,並且調控後天免疫反應(Adaptive immune responses)的啟動及後續發展。人體細胞可利用Toll-like receptors (TLRs)及細胞質的cytosolic RIG-I-like receptors (RLRs)等Pattern-Recognition Receptors (PRRs)去偵測入侵體內的病原菌。TBK1 (Tank-binding kinase 1),和IKK是IKK kinase家族的同源基因,它們是磷酸激活酶,在於傳遞TLRs及RLRs活化訊息扮演必須要的角色,進而促進Type I interferons (IFNs)分泌。然而,TBK1的重要性已被證明,但是它的活化機制及其調控的訊息傳遞鏈,仍需進一步研究探討。我們實驗室,藉由研究TBK1訊息傳遞鏈,發現一個新的分子,會和TBK1結合,並位於在Endosomal-Lysosomal compartments,因此我們命名為TAPE (TBK1-Associated Protein in the Endosomal-lysosomal compartment)。我初步的研究發現,TAPE會藉由其N端和TBK1有交互作用,此外TAPE可以協同TBK1去活化IFN-,並可以活化NF-B pathway。我的實驗結果也顯示,TAPE會在許多哺乳類動物細胞株裡表現,並且TAPE會細胞內分佈於endosome及lysosome裡。此外,透過表達TAPE,發現TAPE會有抵抗單純性泡疹病毒 (Herpes Simplex Virus,一個DNA 病毒)以及水泡性口炎病毒(VSV,一個RNA virus)的抗病毒效果。基於上述實驗的發現,我們預測TAPE可能是一個新的先天性免疫反應的調控因子,位於Endosomal-Lysosomal compartments,並且可能參與在病毒藉由endocytic pathway被TLRs所辨識的活化路徑。在未來的研究方向,我們更進一步探討TAPE所調控訊息傳遞鏈,並且確定TAPE參與何者TLRs或是PRRs活化路徑。

    Innate immunity serves the first line of host defense against pathogen infection and also bridges to adaptive immunity to build up the full spectrum of immune defenses. Toll-like receptors (TLRs) and cytosolic RIG-I-like receptors (RLRs) are responsible for sensing invading pathogens to trigger innate immune responses. TBK1 (Tank-binding kinase 1) and IKK are non-canonical homolog of IB kinase (IKK) shown to play a key role in linking the TLR and RLR signals to type-I interferon (IFN) activation. However, the TBK1-mediated innate immune pathways remain elusive. Here our group report the identification of a novel TBK1-interacting protein, termed TAPE (TBK1-Associated Protein in the Endosomal-lysosomal compartments), which functions as an activator of innate immunity. Previously, through a proteomic analysis, our group found that TAPE was precipitated in an SRC2-TBK1 signaling complex. I further confirmed that TAPE interacted with TBK1 through its N-terminal region in mammalian cells. Using the luciferase reporter assay, the results showed that TAPE was able to activate both the IFN- and NF-B pathways, suggesting a functional role for TAPE in innate immunity. The tissue expression and subcellular localization of TAPE was examined. My results showed that TAPE was expressed in several cell lines from different tissues. Its distribution in the cell was located in the endosomal and lysosomal compartments, whereby pathogen sensors encounter the invading pathogens through the endocytic pathway. Through the plague assay, the results showed that over expression of TAPE led to the anti-viral responses against herpes simplex virus (HSV, a DNA virus) and vesicular-stomatitis virus (VSV, a RNA virus). Taken together, my study has led to the identification of a novel innate immune regulator, which may function in the endocytic pathway. Future directions will attempt to determine the implication of TAPE in the specific pathogen sensor pathway and to explore its functional roles in vivo.

    壹、緒論 1 1.先天性免疫反應 1 1.1 Toll-like receptor的結構與功能 2 1.2 TLR的訊息傳遞路徑 3 2.偵測DNA與RNA virus的pattern-recognition receptors (PRRs) 4 2.1 RNA病毒的PRRs 4 2.2 DNA病毒的PRRs 5 3.TBK1與IKK連結TLR和RIG-I的訊息傳遞促使type-I IFN分泌 6 4.TAPE(CC2D1A) 的介紹 7 5.研究目的 8 貳、材料與方法 9 1.細胞株及細胞培養 9 2.質體製備 9 3.質體DNA的萃取 10 4,細胞轉染 11 5.西方墨點轉漬分析法 12 6.免疫沉澱法 12 7.啟動子活性分析法 13 8.共軛焦顯微鏡分析 13 9.空斑計數試驗 13 参、實驗結果 15 1.TAPE是一個新的TBK1交互作用的蛋白 15 2.TAPE會活化IFN-、NF-B及Erk 16 3.TAPE會在不同哺乳類動物細胞株表現,且TAPE的細胞內分佈位於endosome以及lysosome 18 4.表達TAPE有抗抵抗單純性泡疹病毒(HSV)以及水泡性口炎病毒(VSV)的抗病毒效果 19 肆、實驗討論 21 伍、參考資料 25

    參考資料 (References)
    1. Janeway, C. A., Jr. 1989. Approaching the asymptote? Evolution
    and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1:1-13.
    2. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
    3. Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
    4. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088.
    5. Martinon, F., and J. Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26:447-454.
    6. Creagh, E. M., and L. A. O'Neill. 2006. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352-357.
    7. Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annu Rev Immunol 21:335-376.
    8. Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257-263.
    9. Inohara, Chamaillard, C. McDonald, and G. Nunez. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355-383.
    10. Fritz, J. H., R. L. Ferrero, D. J. Philpott, and S. E. Girardin. 2006. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250-1257.
    11. Martinon, F., and J. Tschopp. 2007. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10-22.
    12. Yoneyama, M., K. Onomoto, and T. Fujita. 2008. Cytoplasmic recognition of RNA. Adv Drug Deliv Rev 60:841-846.
    13. Geijtenbeek, T. B., S. J. van Vliet, A. Engering, B. A. t Hart, and Y. van Kooyk. 2004. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22:33-54.
    14. Robinson, M. J., D. Sancho, E. C. Slack, S. LeibundGut-Landmann, and C. Reis e Sousa. 2006. Myeloid C-type lectins in innate immunity. Nat Immunol 7:1258-1265.
    15. Willment, J. A., and G. D. Brown. 2008. C-type lectin receptors in antifungal immunity. Trends Microbiol 16:27-32.
    16. Bell, J. K., G. E. Mullen, C. A. Leifer, A. Mazzoni, D. R. Davies, and D. M. Segal. 2003. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528-533.
    17. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat Rev Immunol 4:499-511.
    18. Lord, K. A., B. Hoffman-Liebermann, and D. A. Liebermann. 1990. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387-396.
    19. Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668-6672.
    20. Hoebe, K., X. Du, P. Georgel, E. Janssen, K. Tabeta, S. O. Kim, J. Goode, P. Lin, N. Mann, S. Mudd, K. Crozat, S. Sovath, J. Han, and B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743-748.
    21. Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640-643.
    22. Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-738.
    23. Meylan, E., K. Burns, K. Hofmann, V. Blancheteau, F. Martinon, M. Kelliher, and J. Tschopp. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503-507.
    24. Fitzgerald, K. A., S. M. McWhirter, K. L. Faia, D. C. Rowe, E. Latz, D. T. Golenbock, A. J. Coyle, S. M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491-496.
    25. Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, and S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304-4310.
    26. Guillot, L., R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard, and M. Si-Tahar. 2005. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571-5580.
    27. Le Goffic, R., J. Pothlichet, D. Vitour, T. Fujita, E. Meurs, M. Chignard, and M. Si-Tahar. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368-3372.
    28. Rudd, B. D., E. Burstein, C. S. Duckett, X. Li, and N. W. Lukacs. 2005. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol 79:3350-3357.
    29. Wang, T., T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig, and R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366-1373.
    30. Kong, K. F., K. Delroux, X. Wang, F. Qian, A. Arjona, S. E. Malawista, E. Fikrig, and R. R. Montgomery. 2008. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol 82:7613-7623.
    31. Daffis, S., M. A. Samuel, M. S. Suthar, M. Gale, Jr., and M. S. Diamond. 2008. Toll-like receptor-3 has a protective role against West Nile virus infection. J Virol.
    32. Zhang, S. Y., E. Jouanguy, S. Ugolini, A. Smahi, G. Elain, P. Romero, D. Segal, V. Sancho-Shimizu, L. Lorenzo, A. Puel, C. Picard, A. Chapgier, S. Plancoulaine, M. Titeux, C. Cognet, H. von Bernuth, C. L. Ku, A. Casrouge, X. X. Zhang, L. Barreiro, J. Leonard, C. Hamilton, P. Lebon, B. Heron, L. Vallee, L. Quintana-Murci, A. Hovnanian, F. Rozenberg, E. Vivier, F. Geissmann, M. Tardieu, L. Abel, and J. L. Casanova. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522-1527.
    33. Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira, and C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531.
    34. Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-1529.
    35. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730-737.
    36. Kato, H., O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto, K. Matsui, S. Uematsu, A. Jung, T. Kawai, K. J. Ishii, O. Yamaguchi, K. Otsu, T. Tsujimura, C. S. Koh, C. Reis e Sousa, Y. Matsuura, T. Fujita, and S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105.
    37. Hornung, V., J. Ellegast, S. Kim, K. Brzozka, A. Jung, H. Kato, H. Poeck, S. Akira, K. K. Conzelmann, M. Schlee, S. Endres, and G. Hartmann. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994-997.
    38. Pichlmair, A., O. Schulz, C. P. Tan, T. I. Naslund, P. Liljestrom, F. Weber, and C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997-1001.
    39. Takahasi, K., M. Yoneyama, T. Nishihori, R. Hirai, H. Kumeta, R. Narita, M. Gale, Jr., F. Inagaki, and T. Fujita. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428-440.
    40. Takeuchi, O., and S. Akira. 2008. MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17-22.
    41. Venkataraman, T., M. Valdes, R. Elsby, S. Kakuta, G. Caceres, S. Saijo, Y. Iwakura, and G. N. Barber. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178:6444-6455.
    42. Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513-520.
    43. Hochrein, H., B. Schlatter, M. O'Keeffe, C. Wagner, F. Schmitz, M. Schiemann, S. Bauer, M. Suter, and H. Wagner. 2004. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 101:11416-11421.
    44. Krug, A., A. R. French, W. Barchet, J. A. Fischer, A. Dzionek, J. T. Pingel, M. M. Orihuela, S. Akira, W. M. Yokoyama, and M. Colonna. 2004. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107-119.
    45. Tabeta, K., P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, L. Shamel, S. Sovath, J. Goode, L. Alexopoulou, R. A. Flavell, and B. Beutler. 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101:3516-3521.
    46. Nociari, M., O. Ocheretina, J. W. Schoggins, and E. Falck-Pedersen. 2007. Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. J Virol 81:4145-4157.
    47. Zhu, J., X. Huang, and Y. Yang. 2007. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol 81:3170-3180.
    48. Ishii, K. J., C. Coban, H. Kato, K. Takahashi, Y. Torii, F. Takeshita, H. Ludwig, G. Sutter, K. Suzuki, H. Hemmi, S. Sato, M. Yamamoto, S. Uematsu, T. Kawai, O. Takeuchi, and S. Akira. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7:40-48.
    49. Waibler, Z., M. Anzaghe, H. Ludwig, S. Akira, S. Weiss, G. Sutter, and U. Kalinke. 2007. Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses. J Virol 81:12102-12110.
    50. Delale, T., A. Paquin, C. Asselin-Paturel, M. Dalod, G. Brizard, E. E. Bates, P. Kastner, S. Chan, S. Akira, A. Vicari, C. A. Biron, G. Trinchieri, and F. Briere. 2005. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175:6723-6732.
    51. Stockinger, S., B. Reutterer, B. Schaljo, C. Schellack, S. Brunner, T. Materna, M. Yamamoto, S. Akira, T. Taniguchi, P. J. Murray, M. Muller, and T. Decker. 2004. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J Immunol 173:7416-7425.
    52. Stetson, D. B., and R. Medzhitov. 2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93-103.
    53. Takaoka, A., Z. Wang, M. K. Choi, H. Yanai, H. Negishi, T. Ban, Y. Lu, M. Miyagishi, T. Kodama, K. Honda, Y. Ohba, and T. Taniguchi. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501-505.
    54. Ishii, K. J., T. Kawagoe, S. Koyama, K. Matsui, H. Kumar, T. Kawai, S. Uematsu, O. Takeuchi, F. Takeshita, C. Coban, and S. Akira. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725-729.
    55. Peters, R. T., and T. Maniatis. 2001. A new family of IKK-related kinases may function as I kappa B kinase kinases. Biochim Biophys Acta 1471:M57-62.
    56. Pomerantz, J. L., and D. Baltimore. 1999. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J 18:6694-6704.
    57. Bonnard, M., C. Mirtsos, S. Suzuki, K. Graham, J. Huang, M. Ng, A. Itie, A. Wakeham, A. Shahinian, W. J. Henzel, A. J. Elia, W. Shillinglaw, T. W. Mak, Z. Cao, and W. C. Yeh. 2000. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. Embo J 19:4976-4985.
    58. Tojima, Y., A. Fujimoto, M. Delhase, Y. Chen, S. Hatakeyama, K. Nakayama, Y. Kaneko, Y. Nimura, N. Motoyama, K. Ikeda, M. Karin, and M. Nakanishi. 2000. NAK is an IkappaB kinase-activating kinase. Nature 404:778-782.
    59. Sharma, S., B. R. tenOever, N. Grandvaux, G. P. Zhou, R. Lin, and J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-1151.
    60. Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539-548.
    61. Hemmi, H., O. Takeuchi, S. Sato, M. Yamamoto, T. Kaisho, H. Sanjo, T. Kawai, K. Hoshino, K. Takeda, and S. Akira. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199:1641-1650.
    62. McWhirter, S. M., K. A. Fitzgerald, J. Rosains, D. C. Rowe, D. T. Golenbock, and T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101:233-238.
    63. Perry, A. K., E. K. Chow, J. B. Goodnough, W. C. Yeh, and G. Cheng. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199:1651-1658.
    64. tenOever, B. R., S. Sharma, W. Zou, Q. Sun, N. Grandvaux, I. Julkunen, H. Hemmi, M. Yamamoto, S. Akira, W. C. Yeh, R. Lin, and J. Hiscott. 2004. Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol 78:10636-10649.
    65. Kato, H., S. Sato, M. Yoneyama, M. Yamamoto, S. Uematsu, K. Matsui, T. Tsujimura, K. Takeda, T. Fujita, O. Takeuchi, and S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19-28.
    66. Gallagher, C. M., and J. A. Knoblich. 2006. The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641-653.
    67. Jaekel, R., and T. Klein. 2006. The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11:655-669.
    68. Rogaeva, A., K. Galaraga, and P. R. Albert. 2007. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 85:2833-2838.
    69. Rogaeva, A., and P. R. Albert. 2007. The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur J Neurosci 26:965-974.
    70. Matsuda, A., Y. Suzuki, G. Honda, S. Muramatsu, O. Matsuzaki, Y. Nagano, T. Doi, K. Shimotohno, T. Harada, E. Nishida, H. Hayashi, and S. Sugano. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307-3318.
    71. Kawai, T., and S. Akira. 2006. Innate immune recognition of viral infection. Nat Immunol 7:131-137.
    72. Tanimura, N., S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake. 2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochemical and biophysical research communications 368:94-99.
    73. Iwasaki, A. 2007. Role of autophagy in innate viral recognition. Autophagy 3:354-356.
    74. Schmid, D., and C. Munz. 2007. Innate and adaptive immunity through autophagy. Immunity 27:11-21.
    75. Delgado, M. A., R. A. Elmaoued, A. S. Davis, G. Kyei, and V. Deretic. 2008. Toll-like receptors control autophagy. Embo J 27:1110-1121.
    76. Lee, H. K., and A. Iwasaki. 2008. Autophagy and antiviral immunity. Curr Opin Immunol 20:23-29.
    77. Xu, Y., X. D. Liu, X. Gong, and N. T. Eissa. 2008. Signaling pathway of autophagy associated with innate immunity. Autophagy 4:110-112.

    pGL3-ELAM-Luc "Addgene plasmid 13029"、Rab5 DsRed "Addgene plasmid 13050"參考自文獻Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. Sharma DK et al. (J Biol Chem. 2003 Feb 28. 278(9):7564-72. Pubmed) 以及Lamp-1-RFP "Addgene plasmid 1817"參考自文獻Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Sherer NM et al. (Traffic 2003 Nov;4(11):785-801. Pubmed)

    下載圖示 校內:2011-09-12公開
    校外:2011-09-12公開
    QR CODE