簡易檢索 / 詳目顯示

研究生: 周柏安
Chou, Po-An
論文名稱: 高分子poly(2,5-bis(3-alkylthiophen-2-yl)thieno〔3,2-b〕thiophene) (PBTTT)結晶特性對有機薄膜電晶體之電特性影響
The influence of PBTTT crystallization on electrical characteristic of thin-film transistors
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 有機半導體PBTTT-C14
外文關鍵詞: organic semiconductor, PBTTT-C14, HMB, organic thin-film transistor, thermal gradient
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以高分子poly(2,5-bis(3-alkylthiophen-2-yl)thieno〔3,2-b〕thiophene) (PBTTT-C14)製作有機薄膜電晶體的載子傳輸層薄膜,將PBTTT-C14分別使用旋塗製程與熱梯度結晶製程製作有機薄膜電晶體元件,並探討兩種薄膜的分子結晶特性對元件的電特性影響。研究分為兩部分,第一部分將探討PBTTT-C14以不同製程製作薄膜,比較兩者的物性與電性參數之差異;第二部分則是將熱梯度結晶製程製作的薄膜電晶體應用在線偏振光感測,觀察元件在不同偏振光照射下元件電流造成的光響應變化。
    物性分析的部份,我們用偏光顯微鏡(POM)、原子力顯微鏡(AFM)與穿透式電子顯微鏡(TEM)觀察PBTTT-C14薄膜的表面形貌。當我們旋轉POM載台,POM的目鏡能觀察到熱梯度結晶薄膜有亮暗變化,表示PBTTT-C14分子具有方向性;AFM和TEM觀察到熱梯度結晶薄膜表面的PBTTT-C14分子具有方向性,而旋塗薄膜表面的PBTTT-C14分子則是顆粒狀雜亂分佈。X-光繞射(XRD)分析與紫外光/可見光光譜儀分析能分辨薄膜的結晶程度,熱梯度結晶薄膜在XRD結果的(100)、(200)、(300)之訊號皆有較小的半高寬,表示熱梯度結晶薄膜有較好的結晶;而吸收光譜在580 nm波段代表PBTTT-C14薄膜的結晶區,熱梯度結晶薄膜在此波段有明顯的波峰,旋塗薄膜則是趨近平緩。電性分析的部分,熱梯度結晶元件作為實驗組、以旋塗元件作為對照組進行量測。由結果顯示,當熱梯度結晶薄膜作為載子傳輸層,元件有較好的載子遷移率、次臨界擺幅、電流開關比與較低的臨界電壓。此外,本研究對熱梯度結晶薄膜使用四種不同熱退火溫度,發現以130度退火30分鐘再以80度退火一小時有最好的物性與電性。
    應用的部分,將PBTTT-C14製作的元件應用在線偏振光感測,熱梯度結晶元件的載子傳輸層薄膜具有方向性,當偏振光以不同方向線偏振照射在主動層薄膜時激發出的激子(exciton)量不同,以致量測汲極電流的差異隨時間變化將近兩倍;當不同線偏振光照射在旋塗元件時,汲極電流隨時間變化幾乎沒有差異。

    The growth of organic semiconductor influences the crystalline and polycrystalline microstructures, which greatly affect the performances of related organic thin-film transistors (OTFTs). Accordingly, the investigation is very significant to correlate the crystallite properties of organic semiconductor with the charge transport in OTFTs. In this study, p-type OTFTs were fabricated using poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) as active materials. We demonstrated a method of thermal gradient to guide the orientation of PBTTT-C14 molecules during the formation of PBTTT-C14 film, resulting in an ordered PBTTT-C14 crystallization. To guide the growth of PBTTT-C14 films on dielectric surface, the hexamethylbenzene (HMB) was used to assist the crystallization of PBTTT-C14 during the formation of PBTTT-C14 films denoted HMB-processed (H-P) PBTTT-C14 films.
    To realize the crystalline orientation of H-P PBTTT-C14 films, the polarizing optical microscope (POM) was used to measure H-P and spin-coating PBTTT-C14 films. By observing different angles of H-P films from 0o parallel to the direction of thermal gradient to 45o, we found that the POM image was completely dark at 0o and the brightest at 45o. The crystallite and surface topography of H-P PBTTT-C14 films were measured by the transmission electron microscopy (TEM) and atomic force microscope (AFM), respectively. The images show that the H-P films have crossover crystallizations and ordered orientation along the direction of thermal gradient. In addition, we also applied x-ray diffractometer (XRD) and ultraviolet/visible spectrophotometer (UV/Vis) to study the orientation of H-P PBTTT film. The electrical properties of H-P PBTTT-C14-based OTFTs were obtained by using Keithley 4200SCS semiconductor analyzer. Based on the electrical properties of OTFTs, the results indicate that the mobility of carrier, subthreshold swing, threshold voltage, and on/off current ratio of H-P OTFTs were better than the device with spin-coating PBTTT-C14. In summary, we demonstrated a simple method to enhance the performances of polymer-based OTFTs by improving the microstructure of PBTTT-C14. This novel crystalized technique has potential to enhance the performances and broaden the applications in other organic devices.

    中文摘要 I Extend Abstract III 致謝 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 有機半導體 1 1.2 研究目的 2 第二章 原理 4 2.1有機薄膜電晶體的基本原理 4 2.1.1 前言 4 2.1.2 有機薄膜電晶體結構 4 2.1.3 有機薄膜電晶體基本操作原理 6 2.1.4 有機薄膜電晶體基本公式及特性 7 第三章 實驗方法與步驟 13 3.1 實驗大綱 13 3.2 製程材料與儀器 14 3.2.1實驗材料 14 3.2.2 製程儀器 15 3.3 實驗流程 16 3.3.1 基板清洗 16 3.3.2 有機修飾層製程 16 3.3.3 熱梯度結晶製程 17 3.3.4 旋轉塗佈製程 18 3.3.5 電極製程方法 18 3.4 分析儀器與量測儀器 19 3.4.1 偏光顯微鏡(Polarized Microscope,POM) 19 3.4.2 原子力顯微鏡(Atomic Force Microscope,AFM) 19 3.4.3 穿透式電子顯微鏡(Transmission electron microscope,TEM) 20 3.4.4 X光繞射分析儀 20 3.4.5紫外光/可見光光譜儀(UV-vis spectroscopy) 21 3.4.6 光激螢光光譜系統(Photoluminescence,PL) 21 3.4.7 電性量測 22 3.4.7 偏振光感測元件之電性量測 22 第四章 不同製程之結果與討論 27 4.1前言 27 4.2 薄膜特性分析 28 4.2.1 偏光顯微鏡觀察非等向性薄膜 28 4.2.2 原子力顯微鏡分析表面結構 29 4.2.3 穿透式電子顯微鏡觀察微觀結構 30 4.2.4 X光繞射分析 31 4.2.5 紫外光/可見光光譜儀分析 33 4.2.6 光激螢光光譜分析結果 35 4.3 電性量測 36 4.3.1 熱梯度結晶製程電性結果 36 4.3.2 旋塗製程電性結果 37 4.3.3熱梯度結晶製程於不同溫度退火對電性影響 38 4.4結晶方向對於偏振光感測之應用 39 4.4.1前言 39 4.4.2電性量測 39 5.1 結論 83 5.2 未來展望 86 第六章 參考文獻 87

    [1]. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channellayer”, Appl. Phys. Lett.,86, 013503 (2005)
    [2]. M. Barra, F. Bloisi, A. Cassinese, F. V. Di Girolamo, L. Vicari, “Photoinduced long-term memory effects in n -type organic perylene transistors”, J. Appl. Phys., 106, 126105 (2009)
    [3]. C. R. Newman, C. D. Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, P. C. Ewbank, Kent R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mater.,16, 4436 (2004)
    [4]. C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, “High mobility
    electron-conducting thin-film transistor by organic vapor phase
    deposition”, Appl. Phys. Lett., 93, 033305 (2008)
    [5]. H.-G. Jeon, J. Hattori, S. Kato, “Thermal treatment effects on N-alkyl
    perylene diimide thin-film transistors with different alkyl chain”, J.
    Appl. Phys., 108, 124512 (2010)
    [6]. Youngkyoo Kim,Steffan Cook,Sachetan M. Tuladhar,Stelios A. Choulis, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”, Nature materials VOL 5 MARCH (2006)
    [7]. Kim Y K, Cook S, Stelois A C, et al. A strong regioregularity effect in
    self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells[J]. Nature Materials, 5: 197−203, (2006)
    [8]. Martin Brinkmann and Jean-Claude Wittmann, “Orientation of
    Regioregular Poly(3-hexylthiophene) by Directional Solidification: A
    Simple Method to Reveal the Semicrystalline Structure of a
    Conjugated Polymer,” Adv. Mater. 18, 860–863, (2006)
    [9]. Mi Jung Lee,Dhritiman Gupta,Ni Zhao,Martin Heeney,Iain
    McCulloch,Henning Sirringhaus, “Anisotropy of Charge Transport in
    a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated
    Polymer Semiconductor,”Adv. Funct. Mater. 21, 932–940, (2011)
    [10].鄭偉志, 聚噻吩於亞共晶二元系中的液晶相成長路徑與鏈段取
    向之探討,國立成功大學碩士論文, (2013)
    [11].M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela, Sov.
    Phys._Solid State 12, 961, (1970)
    [12]Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of
    polyacetylene/polysiloxane interface” , J.Appl. Phys. , 54, 3255,
    (1983)
    [13].C.D. Dimitrakopoulos, “Organic Field-Effect Transistors for Large-Area Electronics”, Advanced Semiconductor and Organic Nano-Techniques, 191-240, (2003)
    [14].O.D. Jurchescu, “13 – Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique ”, Handbook of Organic Materials for Optical and (Opto)electronic Devices, A volume in Woodhead Publishing Series in Electronic and Optical Materials, 377–397, (2013)
    [15].O.D. Jurchescu, “13 – Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique ”, Handbook of Organic Materials for Optical and (Opto)electronic Devices, A volume in Woodhead Publishing Series in Electronic and Optical Materials, 377–397, (2013)
    [16] .Z. Baoa and J.A. Rogersb, “Thin-film Transistors From Organic Semiconducting Materials, Processing Technologies for”, Encyclopedia of Materials: Science and Technology (Second Edition), 9319-9323 (2001)
    [17]. T. J. Prosa , M. J. Winokur ,Jeff Moulton,Paul Smith, and A. J. Heegert. “X-ray Structural Studies of Poly(3-alkylthiophenes)”, Macromolecules, 25, 4364-4372 (1992)
    [18].Iain Mcculloch,Martin Heeney,Clare Bailey. “Liquid-crystalline semiconducting polymers with high charge-carrier mobility”, nature materials VOL 5 APRIL (2006)
    [19]. T. S. Shabi, S. Grigorian, M. Brinkmann, U. Pietsch, N. Koenen, N. Kayunkid, U. Scherf J. Appl. Polym. Sci. 125, 2335, (2012)

    [20]. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fre´chet, M. F. Toney Macromolecules , 38, 3312, (2005)
    [21].W. C. Cheng, C. Y. Yang, B. Y. Kang, M. Y. Kuob, J. Ruan Soft Matter, 9, 10822, (2013)
    [22].盧承昌, 聚(3-己基噻吩)結晶特性對薄膜電晶體電特性影響之研
    究, 國立成功大學碩士論文 (2015)
    [23].顧文琪,電子束曝光微納加工技術,北京工業大學出版社 (2004)
    [24].Douglas A. Skook, Donald M. West, F. James Holler and Stanley R.
    Crouch, Fundamentals of Analytic Chemistry, 8th edition, page 786-
    787.
    [25].楊焙凱,熵驅動之小分子嵌入與複合液晶相的成長, 國立成功大學碩士論文 (2016)
    [26].許樹恩,吳泰伯, X光繞射原理與材料結構分析,中國材料科學學會出版, (2004)
    [27].Manish Pandey,Shyam S. Pandey.“Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation.”Organic Electronics 43, 240-246, (2017)
    [28]. M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, 1648, (1956)

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE