| 研究生: |
陳世平 Chen, Shih-Ping |
|---|---|
| 論文名稱: |
以極限電流設計與厚膜製程對氧氣感測性能影響之研究 Improvement of Oxygen Sensing by using Limiting- Current Design and Thick Film Processing |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 平板式含氧感知器 、積層陶瓷 、極限電流式含氧感知器 、空燃比含氧感知器 |
| 外文關鍵詞: | planar oxygen sensor, limiting current oxygen sensor, air fuel oxygen sensor |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含氧感知器為噴射引擎汽機車關鍵性零組件之一,其中牽涉精密陶瓷 技術與電化學原理。傳統錐狀氧氣感知器電解質厚度約1000μm,加熱器 升溫時間較長,利用厚膜技術可將電解質厚度降至僅200μm,大幅降低加熱所需時間,可有效提升元件成品性能。本論文的主軸是以積層陶瓷 厚膜技術(包括刮刀成型、熱壓疊層、網印法等)製備平板電流式含氧感知器,主要基材為電解質釔安定氧化鋯( yttria-stabilized zirconia, YSZ)。經由不同的疊壓與緻密化燒結參數探討各層厚膜間之匹配性以及微結構之影響。主要的目標是為提升感測氧氣精準度,以極限電流式的設計使回饋訊號與氧氣濃度成線性關係,相較於傳統電壓式含氧感知器回饋訊號與氧氣濃度成對數關係,極限電流式含氧感知器可感測到更細微的氧濃度差,改善空燃比調控精準度,達到環保目的。
本實驗為了製作完整含氧感知器,首先將薄帶以不同疊層壓力(15MPa,17.5MPa,20MPA)但固定時間(20分)以及固定溫度(75OC)比較疊層效果,在高於黏結劑 Tg溫度時,薄帶中黏結劑流動性增加且有效軟化以利於界面緊密接合,以75℃持壓20MPa、20分鐘後可將薄帶結合,無明顯界面縫隙殘留。進行緻密化燒結時,胚體在脫膠以及空氣通道層完全分解過程會產生劇烈反應,部分溫度區間有大量氣體釋放,是以控制胚體燒結之升溫速率以避免破裂現象發生。
接著,改善加熱體設計圖樣降低胚體熱應力集中情形,提升元件使用良率,使其具穩定之升溫速率並具有良好熱循環性能。以模擬廢氣測試含氧感知器性能,發現結構參數擴散孔直徑0.2mm時,各濃度(5%~21%)皆能表現出極限電流平台,並與傳統是極限電流設計做比較,發現平板式極限電流式含氧感知器具類似的特徵曲線,但在製程及封裝方面降低加工難度節省成本。極限電流式含氧感知器在廢棄氣氛由稀油變為濃油時,會因電動勢逆向而導致氧濃度誤判之結果,造成極限電流式含氧感知器僅適用稀油燃燒的操作環境,本次實驗結果發現適用氧濃度範圍大致為5%至21%,因此,為同時提升感測準確度以及感測範圍,製作出同時具感測元件及幫浦元件的空燃比含氧市售感知器,發現感測範圍延伸從0.8%至21%,比較於單純的電壓式或電流式含氧感知器,空燃比含氧感知器不僅具較佳的感測準確度,也具有較廣的感測範圍,獲得較佳的感測性能。
In order to catch the emission regulation, nowadays almost all gasoline-powered cars are currently equipped with the catalytic converter to treat the three regulated exhaust pollutants NOX, HC and CO. Three-way catalyst (TWC) consistory of platinum, palladium and rhodium enables the elimination of more than 90% of the NOX, HC and CO emissions. While exhaust gas pollutant is significantly reduced when engine is operating under an accurate stoichiometric (λ=1) air-fuel mixture. Thus, an oxygen sensor is currently used to monitor the deviation of air-fuel ratio away from stoichiometry in a combustion process.
The zirconia oxygen sensor of the first generation had a conical thimble form. However, the thimble-type oxygen sensors are approximately 1mm wall thickness. It takes 30 seconds to heat the zirconia solid electrolyte to reach minimum operation temperature (about 300OC). The conventional limiting current type oxygen sensor has simply Pt electrodes on both opposite sides of the zirconia electrolyte. However, the limiting current oxygen sensor with a diffusion hole designed to disk shape will increase the package difficulty and suppress its application fields. The oxygen with planar design will provide the advantages of being lighter, smaller, more sensitive and faster in response.
Multi-layer ceramic technologies including tape casting, screen printing, laminating and co-sintering were adopted to manufacture planar type of limiting current oxygen sensors. The limiting current value showed a linear relationship with oxygen concentration and a temperature-dependence as T0.88 was given in oxygen-argon mixing-gas. Therefore, in this study, limiting current type oxygen sensors only could sense range from 5% to 21% oxygen concentration. To overcome this problem, a two stage cell (air-fuel ratio oxygen sensor) design has been developed: a pumping cell and a sensing cell. This device has several advantages over a single-cell device, including weaker temperature dependence and a wide range sensing performance from 0.8% to 21%.
1. R. Ramamoorthy, P.K. Dutta, S.A. Akbar, “Oxygen sensors: Materials, methods, designs and applications.” Journal of Materials Science 38 (2003)4271-4282.
2. H. Meixner*, U. Lampe, “Metal oxide sensors”, Sensors and Actuators B 33 (1996) 198-202.
3. E. Ivers-Tiffee, K.H. Hardtl, W. Menesklou, J. Riegel“Principles of solid state oxygen sensors for lean combustion gas control.”ElectrochemicaActa 47 (2001)807-814.
4. R.E. Mistler, D.J. Shanefield, R.B. Runk, Foil Casting of Ceramics, Ceramic Processing Before Firing, Wiley, New York, 1978, p. 411.
5. J. Riegel, H. Neumann, H.M. Wiedenmann, “Exhaust gas sensors for automotive emission control.” Solid State Ionics 152-153 (2002) 783-800.
6. Francis Menil, Veronique Collard, Claude Lucat, “Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines.” Sensors and Actuators B 67 (2000)1-23.
7. Ralf Moos, “A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics.” Int. J. Appl. Ceram. Technol., 2[5]401-403(2005)
8. Sotomitsu Ikeda, Osamu Sakurai, KeizoUematsu, NobuyasuMizutani, Masanori Kato, “Electrical conductivity of yttria-stabilized zirconia single crystals.” Journal of Materials Science 20 (1985) 4593-4600.
9. Scott H G. Phase relationships in the zirconia-yttria system[J]. Journal of Materials Science, 1975, 10(9): 1527-1535.
10. P. Timakul, S. Jinawath, P. Aungkavattana, “Fabrication of electrolyte materials for solid oxide fuel cells by tape-casting.” CeramicsInternational 34 (2008) 867-871.
11. Hotza D, Greil P. Review: aqueous tape casting of ceramic powders[J]. Materials Science and Engineering: A, 1995, 202(1): 206-217.
12. Sung J S, Koo K D, Park J H. Lamination and sintering shrinkage behavior in multilayered ceramics[J]. Journal of the American Ceramic Society, 1999, 82(3): 537-544.
13. Yaohui Zhang, Xiqiang Huang, Zhe Lu, XiaodongGe, Jiahuan Xu, Xianshuang Xin, XueqingSha, Wenhui Su, “Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs.” Solid State Ionics 177 (2006) 281-287.
14. Yaohui Zhang, Xiqiang Huang, Zhe Lu, Zhiguo Liu, XiaodongGe, Jiahuan Xu, Xianshuang Xin, XueqingSha, Wenhui Su,“A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing.” Journal of Power Sources 160 (2006) 1065-1073.
15. Rajesh V. Shende, Melissa Kline, Stephen J. Lombardo, “Effects of supercritical extraction on the plasticization of poly(vinyl butyral) and dioctyl phthalate films.” J. of Supercritical Fluids 28 (2004) 113-120.
16. Wenxia Li, Alvin Feingold, PonnusamyPalanisamy, and Gerald Lorenz, “Co-sintering zirconia electrolyte and insulator tapes for sensor applications.” J. Am. Ceram. Soc., 95[12]3815-3820(2012)
17. Qibing Chang, Lei Zhang, Xingqin Liu, Dingkun Peng, GuangyaoMeng, “Preparation of crack-free ZrO2 membrane on Al2O3 support with ZrO2-Al2O3 composite intermediate layers.” Journal of Membrane Science 250 (2005) 105-111.
18. Saji K. Characteristics of Limiting Current‐Type Oxygen Sensor[J]. Journal of the Electrochemical Society, 1987, 134(10): 2430-2435.
19. Menil F, Coillard V, Lucat C. Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines[J]. Sensors and Actuators B: Chemical, 2000, 67(1): 1-23.
20. Ivers-Tiffée E, Härdtl K H, Menesklou W, et al. Principles of solid state oxygen sensors for lean combustion gas control[J]. Electrochimica Acta, 2001, 47(5): 807-814.
21. Lee J H. Review on zirconia air-fuel ratio sensors for automotive applications[J]. Journal of materials science, 2003, 38(21): 4247-4257.
22. Ramamoorthy R, Dutta P K, Akbar S A. Oxygen sensors: materials, methods, designs and applications[J]. Journal of materials science, 2003, 38(21): 4271-4282.
23. Logothetis E M, Visser J H, Soltis R E, et al. Chemical and physical sensors based on oxygen pumping with solid-state electrochemical cells[J]. Sensors and Actuators B: Chemical, 1992, 9(3): 183-189.
24. Regitz S, Collings N. Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor[J]. Measurement Science and Technology, 2008, 19(7): 075201.
25. Detwiler E J, Kuisell R C, Bonadies J V. Current control for a pumped air reference oxygen sensor: U.S. Patent 6,482,310[P]. 2002-11-19.
26. Lee J H, Kwon C S, Kim H, et al. Limiting current and wide range air/fuel ratio sensors using the same YSZ A12O3 layers as electrolyte and diffusion barrier[J]. Sensors and Actuators B: Chemical, 1996, 36(1): 278-284.
27. Moos R. A brief overview on automotive exhaust gas sensors based on electroceramics[J]. International Journal of Applied Ceramic Technology, 2005, 2(5): 401-413.