簡易檢索 / 詳目顯示

研究生: 許芳銘
Hsu, Fang-Ming
論文名稱: 利用逆算法配合實驗數據估算CPU基座之散熱效果
Application of the Inverse Method to Estimate Heat Dissipation Effects on CPU Heatsink with Experimental Data
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 58
中文關鍵詞: 逆向熱傳導散熱鰭片
外文關鍵詞: CPU, Heatsink, Inverse
相關次數: 點閱:102下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文提出一種混合拉氏轉換法(Laplace transform technique)和有限差分法(Finite difference method)的數值方法,並配合最小平方法和溫度量測值來預測CPU之散熱鰭片(Heatsink)的散熱量。首先利用拉氏轉換法處理統制微分方程式及邊界條件之時間域而後再以有限差分法處理轉換後之統制微分方程式及邊界條件,最後再以數值逆拉氏轉換法求取標準試件之溫度值。本文在進行逆算過程時,估算值(Estimates)的函數型態先前是未知的。為了欲求得較精確的估算值,整個時間域被分割成數個小時間區間(Sub-time interval),而後再利用本文之混合逆算法求出每一小時間區間的估算值。本文數值方法的優點是可以求得在某一特定時間的溫度值,而不需要由初始時間慢慢地求解。最小平方法的應用在於使數值結果能較快速地收斂。預測結果顯示本文之數值方法能夠有效地預測出較精確的估算值且所求得於量測點之溫度值也頗吻合實驗值。因此,本文之逆向熱傳導方法配合溫度量測值,可用來預測CPU與散熱鰭片間之溫度值並減少接觸熱阻的影響。文中也將探討量測誤差對預測值的影響。

      The present study introduces a hybrid numerical method to predict the heat dissipation on CPU heatsink. This algorithm combines the Laplace transform technique and the finite-difference method in conjunction with the least-squares scheme and temperature measurements. Time-dependent terms in the governing differential equation and the boundary conditions are removed by using the Laplace transform technique, and then the resulting differential governing equation and boundary conditions are solved by using the finite-difference method. The temperature distribution in the standard material is obtained by using the numerical inversion of Laplace transform. The functional form of the unknow estimates is not given a prior before performing the inverse calculation. To obtain more accurate estimates, the whole time domain is divided into several sub-time domains. The hybrid inverse scheme is applied to obtain the present estimates for each sub-time domain. The advantage of the present numerical scheme is that, the temperature can be calculated at a specific time without step-by-step computation from the initial time. Due to the application of the least-squares scheme, the convergence of the present estimates can become fast. The results show that the present numerical method can accurately and efficiently obtain the present estimates. Thus, it can be concluded that the present numerical method with experimental data can be applied to estimate temperature distribution between CPU and heatsink. It also shows that the contact resistance will be decreased between CPU and heatsink. The effect of measurement error will also be investigated in this thesis.

    摘要.....................................Ⅰ 英文摘要.................................Ⅱ 誌謝.....................................Ⅲ 目錄.....................................Ⅳ 表目錄...................................Ⅵ 圖目錄...................................Ⅶ 符號說明.................................Ⅹ 第一章 緒論...............................1 1-1 研究背景.....................1 1-2 文獻回顧.....................3 1-3 研究目的.....................4 1-4 研究重點與架構 ...............5 第二章 理論分析與數值模擬.................7 2-1 簡介.........................7 2-2 理論分析.....................8 2-2-1 直接熱傳導問題.............9 2-2-2 逆向熱傳導問題.............11 2-3 結果與討論...................15 第三章 實驗操作與數據分析.................17 3-1 簡介.........................17 3-2 實驗設備.....................17 3-3 實驗步驟.....................20 3-4 實驗之分析方法與操作條件.....21 3-5 實驗結果與討論...............22 第四章 綜合結論與建議.....................50 4-1 綜合結論.....................50 4-2 未來發展方向.................52 參考文獻..................................53

    1. Shumakoy, N. V., “A method for the
    experimental study of the process of
    heating a solid body,” Soviet Physics-
    Technical Physics (Translated by
    Institute of Physics), Vol. 2, pp. 771, 1957.

    2. Stolz, G. Tr., “Numerical solution to an
    inverse problem of heat condition
    for simple shapes,” ASME J. Heat Transfer,
    Vol. 82, pp. 20-26, 1960.

    3. Beck, J. V., “Calculation of surface heat
    flux from an integral temperature
    history,” ASME J. Heat Transfer, 62-HT-46,
    1962.

    4. Sparrow, E. M., Haji-Sheikh A. and Lundgern,
    T. S. ,“The inverse problem in transient heat
    conduction, “ J. Appl. Mech., Vol. 86e, pp.
    369-375, 1964.

    5. Beck, J. V., “Surface heat flux determination
    using an integral method,” Nucl. Eng. Des.,
    Vol. 7, pp. 170-178, 1968.

    6. Beck, J. V., “Nonlinear estimation applied to
    the nonlinear inverse heat conduction
    problem,” Int. J. Heat Mass Transfer, Vol.
    13, pp. 713-71, 1970.

    7. Alifanov, O. M., “Solution of an inverse
    problem of heat conduction by iteration
    method,” J. of Eng. Phys., Vol. 26, No. 4,
    pp. 471-476, 1974.

    8. Beck, J. V., Litkouhi B., and St. Clair C. R.,
    “Efficient sequential solution of nonlinear
    inverse heat conduction problem,” Numer. Heat
    Transfer, Vol. 5, pp.
    275-286, 1982.

    9. Alnajem, N. M., and Özisik, M. N., “A direct
    analytical approach for solving linear inverse
    heat conduction problems,” ASME J. Heat
    Transfer, Vol. 107, pp. 700-703, 1985.

    10. Scott, E. P., and Beck, J. V., “Analysis of
    order of the sequential regulation solutions
    of heat conduction problem,” ASME J. Heat
    Transfer, Vol. 111, pp.218-224, 1989.

    11. Beck, J. V., and Murio, D. A., “Combined
    function specification regularization
    procedure for solution of inverse heat
    conduction problem,” AIAA J., Vol. 24, No.
    180-185, 1986.

    12. Huang, C. H., Özisik, M. N., “Inverse
    problem of determining the unknown
    wall heat flux in laminar flow through a
    parallel plate duct,” Numer. Heat
    Transfer, Part A, Vol. 21, pp. 55-70, 1992.

    13. Huang, C. H., Özisik, M. N., “Inverse
    problem of determining the unknown
    strength of an internal plate heat source,”
    J. Franklin Institute, Vol. 329, No. 4, pp.
    751-764, 1992.

    14. Arledge, R. G., and Haji-Sheikh, A., “A
    iterative approach to the solution
    of inverse heat conduction problem,” Numer.
    Heat Transfer, Vol. 1, pp. 365-376, 1978.

    15. Woo, K. W., and Chow, L. C., “Inverse heat
    conduction by direct inverse laplace
    transform,” Numer. Heat Transfer, Vol. 4,
    pp. 499-504, 1981.

    16. Raynaud, M., and Beck, J. V., “Methodology
    for comparison of inverse heat conduction
    methods,” ASME J. Heat Transfer, Vol. 110,
    pp. 30-37, 1988.

    17. Lin, S. P., and Chu H. S., “Thermal
    uniformity of 12-in silicon wafer
    during rapid thermal processing by inverse
    heat transfer method,” IEEE Transaction on
    Semiconductor Manufacturing, Vol. 13, No. 4,
    pp. 448-456, November 2000.

    18. Frank, I., “An application of least-squares
    method to the solution of the inverse problem
    of heat conduction,” J. Heat Transfer, 85C,
    pp. 378-379, 1963.

    19. Mulholland, G. P., Gupta B. P., and San
    Martin R. L., “Inverse problem of
    heat conduction in composite meadia,” ASME
    Paper No. 75-WA/HT-83, 1975.

    20. Deverall, L. I., And Channapragada R. S., “
    An new integral equation for heat flux in
    inverse heat conduction,” J. Heat Transfer,
    88C, pp. 327-328, 1966.

    21. Burggraf, O. R., “An exact solution of the
    inverse problem in heat conduction theory and
    applications,” ASME J. Heat Transfer, Vol.
    84, pp. 373-382, 1964.

    22. Yeung, W. K. and Lam, T. T., “ Second-order
    finite difference approximation for inverse
    determination of thermal conductivity,” Int.
    J. Heat Mass Transfer, Vol. 39, No. 17, pp.
    3685-3693, 1996.

    23. Bass, B. R. and Ott, L. J., “ A finite
    elment formulation of the two-dimensional
    inverse heat conduction problem,” Adv.
    Comput. Technol., Vol. 2, pp. 238-248, 1980.

    24. Liu, Y. and Murio, D. A., “Numerical
    experiments in 2-D IHCP on bounded domains
    part I: the ‘interio’ cube problem,”
    Computer Math. Appl, Vol. 31, No. 1, pp. 15-
    32, 1996.

    25. Chen, H. T., and Lin, J. Y., “Hybrid Laplace
    transform technique for non-linear transient
    thermal problems,” Int. J. Heat Mass
    Transfer, Vol. 34, pp. 1301-1308, 1991.

    26. Chen, H. T., and Lin, J. Y., “ Numerical
    analysis for hyperbolic heat conduction,”
    Int. J. Mass Transfer, Vol. 36, pp. 2891-
    2898, 1993.

    27. Chen, H. T., and Lin, J. Y., “Analysis of
    two-dimensional hyperbolic heat conduction
    problems,” Int. J. Heat Mass Transfer, Vol.
    37, pp. 153-164, 1994.

    28. 吳朝煌, ”逆向熱傳導問題之研究 - 熱傳導係數及
    未知邊界溫度之預測,” 國立成功大學機械工程研究
    所, 碩士論文, 1994.

    29. H. T. Chen, S. M. Chang, “Application of the
    hybrid method to inverse heat conduction
    problems,” Int. J. Heat Mass Transfer, Vol.
    33, pp. 621-628, 1990.

    30. H. T. Chen, S. Y. Lin, L. C. Fang,
    “Estimation of surface temperature in two-
    dimensional inverse heat conduction
    problems,” Int. J. Heat Mass Transfer, Vol.
    44, pp. 1455-1463, 2001.

    31. H. T. Chen, S. Y. Lin, L. C. Fang,
    “Estimation of two-sided boundary conditions
    for two-dimensional inverse heat conduction
    problems,” Int. J. Heat Mass Transfer, Vol.
    45, pp. 15-23, 2002.

    32. H. T. Chen, X. Y. Wu, “Application of the
    hybrid method to the estimation of surface
    conductions from experimental data,” in:
    Trends in Heat, Mass and Momentum Transfer,
    India, 2003, submitted for publication.

    33. H. T. Chen, X. Y. Wu, Y. S. Hsiao,
    “Estimation of surface condition from the
    theory of dynamic thermal stresses,” int. J.
    Thermal Sciences, Vol. 43, pp. 95-104, 2004.

    34. 張文奎,”散熱鰭片擴散熱阻之分析,” 國立清華大
    學工程與系統科學研究所, 碩士論文, 2002.

    35. 劉建佳,”Pentium 4散熱模組底板具凸起物之散熱性
    能研究,” 國立台灣科技大學機械工程研究所, 碩士
    論文, 2002.

    36. S. Lee, ”Optimum Design and Selection of
    Heat Sinks,” Proceedings of 11th IEEE Semi-
    Term Symposium, pp. 48-54, 1995.

    37. Honig, G., and Hirdes, U., “A method for the
    numerical inversion of Laplace transforms,”
    J. Comp. Appl. Math., Vol. 9, pp. 113-132,
    1984.

    下載圖示 校內:立即公開
    校外:2004-08-23公開
    QR CODE