簡易檢索 / 詳目顯示

研究生: 謝鈞任
Hsieh, Jun-Jen
論文名稱: 利用低溫合成鐵摻雜二氧化鈦在可見光下進行非均相光芬頓反應以降解羅丹明B
Fabrication of Fe-doped TiO2 at Low Temperature as Heterogeneous Photo-Fenton Catalyst For Photodegradation of RhB under Visible Light
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 光降解染料敏化二氧化鈦鐵摻雜二氧化鈦光芬頓
外文關鍵詞: Photodegradation, Dye-sensitized, TiO2, Fe-doped TiO2, Photo-Fenton
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以水相的製程方法合成銳鈦相的二氧化鈦,並以TTIP作為前驅物,而合成出來的二氧化鈦在沒有摻雜任何的雜質元素下可以透過染料敏化的機制在LED可見光下進行光降解反應,並且透過SEM、DLS、XRD、FTIR、FL儀器分析來了解二氧化鈦奈米粒子的特性,而隨著硝酸量的改變,其光降解的效率也有所改變,降解速率最快的為0.5NT,能在20分鐘內能降解73%的羅丹明B。
    為更進一步增強二氧化鈦的催化效果,本研究在合成過程中額外添加硝酸鐵形成鐵摻雜二氧化鈦,並以鐵摻雜二氧化鈦作為非均相的光芬頓觸媒。而隨著鐵的摻雜量的添加,鐵摻雜二氧化鈦的光降解效率會下降,但在添加4.4mM雙氧水後並利用光芬頓反應來進行光降解時,0.6Fe-0.5NT能在二十分鐘內降解80%的羅丹明B,而同樣在4.4mM雙氧水的環境下,改變鐵的摻雜量進行光芬頓反應的降解時,並不會影響降解的效率。

    In this study, TiO2 is fabricated by the sol-gel method in DIW which can perform the photodegradation of RhB under the LED light before doping any element. By adding the ethanol as OH・ capture, we found that there is no OH radical produced during the photodegradation. So, we can confirm that the mechanism of the photodegradation is dye-sensitized degradation. SEM, DLS, XRD, FTIR, and FL were used to examine the property of TiO2. As the amount of nitric acid changes, the photodegradation rate will also change. 0.5NT is the best one for the photodegradation of RhB which can decompose 73% of RhB in 20 min. To further increase the ability of photodegradation, we dope the Fe3+ ion in TiO2 to introduce the Photo-Fenton reaction. Under the 4.4mM H2O2, 0.6Fe-0.5NT can decompose 80% RhB in 20min. The Photo-Fenton degradation rate still remains the same when we change the amount of Fe3+ ion under the 4.4mM H2O2.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 奈米材料 3 2-1-1 奈米材料特性 3 2-1-2 奈米材料應用 6 2-1-3 奈米材料製備 7 2-2 粒子成核成長理論 11 2-3 光觸媒原理 16 2-4 二氧化鈦光觸媒 19 2-5 二氧化鈦的光催化限制與改善方法 21 2-6 氧空缺理論 22 2-6-1 氧空缺簡介 22 2-6-2 氧空缺對於吸收波長的影響 23 2-6-3 氧空缺對於氧氣的吸附行為 24 2-6-4 氧空缺與電荷分離 24 2-7 二氧化鈦金屬摻雜 25 2-8 鐵摻雜二氧化鈦 26 2-9 芬頓反應 28 2-10 光芬頓反應 30 2-11 異相觸媒的芬頓反應 31 2-12 染料敏化光催化 32 第三章 實驗步驟與方法 34 3-1實驗藥品 34 3-2 實驗設備 36 3-3 分析儀器 37 3-3-1 掃描式電子顯微鏡 37 3-3-2 X-射線繞射儀 39 3-3-3 紫外光-可見光光譜儀 41 3-3-4 傅立葉紅外線光譜儀 43 3-3-5 螢光分光光譜儀 44 3-4 實驗流程 47 3-4-1 二氧化鈦合成 47 3-4-2 鐵摻雜二氧化鈦合成 48 3-4-3 光催化反應系統 49 3-4-4光降解實驗流程 50 第四章 結果與討論 51 4-1 二氧化鈦的合成 51 4-2 二氧化鈦特性之分析 52 4-2-1 二氧化鈦之SEM與DLS分析 52 4-2-2 二氧化鈦之XRD分析 55 4-2-3 二氧化鈦之FTIR分析 58 4-3 二氧化鈦之光降解實驗 59 4-3-1 二氧化鈦之LED可見光光降解 59 4-3-2 降解機制的確認與分析 62 4-3-3二氧化鈦光催化效率之探討 64 4-3-4 二氧化鈦之LED可見光/H2O2光降解 66 4-4 鐵摻雜對二氧化鈦之影響 68 4-5 鐵摻雜二氧化鈦之光降解實驗 72 4-5-1 鐵摻雜二氧化鈦之LED可見光光降解 72 4-5-2 鐵摻雜二氧化鈦之光芬頓降解 73 4-5-3 鐵摻雜二氧化鈦v.s.二氧化鈦之LED可見光/H2O2光降解 77 4-5-4 不同的鐵摻雜量對光芬頓反應的影響 79 第五章 結論 81 第六章 未來展望 83 參考文獻 84

    [1]Smydera Julie A., Todd D. Kraussa, ‘‘Coming attractions for semiconductor quantum dot’’, Materials Today, vol. 14, pp. 382-396,2011
    [2]楊仲準,量子尺寸效應於奈米超導金屬之研究,物理雙刊,119-125,2010
    [3]工研院工業材料研究所(2001) , 2001材料奈米技術專刊,台北:經濟部 技術處.
    [4]蘇品書,超微粒子材料技術,復漢出版,1989.
    [5]史宗淮,微粉製程技術簡介,化工,42(6),28(1995).
    [6]Ioannis Rigopoulos ., et al ., Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites , Minerals Engineering , 120 , 66-74 , 2018.
    [7]Barbara Lasio.,et al.,Non-monotonic variation of the grain size in Cu nanopowders subjected to ball milling , Materials Letters , 212 , 171-173 , 2018 .
    [8]郭清癸,黃俊傑,牟中原,金屬奈米粒子的製造,物理雙月刊(甘三卷六期),614-624,2001
    [9]Yunji Lee ., et al ., Ostwald ripening and control of Ag ion reduction degree by ammonium hydroxide in alcohol reduction process , Journal of Industrial and Engineering Chemistry , 21 , 768–771 , 2015 .
    [10]Fu Yang ., et al ., Facilely self-reduced generation of Ag nanowires in
    the confined reductive siliceous nanopores and its catalytic reduction property , Journal of Alloys and Compounds , 719 , 30-41 , 2017.
    [11]Elena Husanu ., et al ., Synthesis of colloidal Ag nanoparticles with
    citrate based ionic liquids as reducing and capping agents , Colloids and Surfaces A: Physicochemical and Engineering Aspects , 538 , 506–512 , 2018.
    [12]A.G. El-Shamy , et al., Promising method for preparation the PVA/Ag nanocomposite and Ag nano-rods , Journal of Alloys and Compounds 744 , 701-711 , 2018.
    [13]Ummul K. Fatema , et al ., Silver/poly(vinyl alcohol) nanocomposite
    film prepared using water in oil microemulsion for antibacterial applications , Journal of Colloid and Interface Science , 514 , 648–655 , 2018 .
    [14]Ying Wei ., et al ., Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties,Materials Science in Semiconductor Processing , 75 , 327–333 , 2018 .
    [15]L.F. Lopes , et al ., Silver-controlled evolution of morphological, structural, and optical properties of three-dimensional hierarchical WO3 structures synthesized from hydrothermal method,Journal of Alloys and Compounds , 736 , 143-151 , 2018.
    [16]Zhijun Ma , et al ., Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity , Applied Surface Science , 436 , 732–738 , 2018 .
    [17]Yuncheng Cai , et al ., Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation , Ceramics International , 43 , 1066–1072 , 2017 .
    [18]Naoki Toshima and Tetsu Yonezawa,Bimetallic nanoparticles-novel materials for chemical and physical applications , New J.Chem , 22 , 1179-1201 , 1998.
    [19]CaO, Guozhong, "Nanostructures and nanomaterials: synthesis,properties and applications. ",London:Imperial College Press,2004
    [20]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical Reviews, vol. 95, no. 1, pp. 69-96, 1995
    [21]W. Z. Tang and H. An, "UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions," Chemosphere, vol. 31, no. 9, pp. 4157-4170, 1995.
    [22]X. Li, J. Yu, and M. Jaroniec, "Hierarchical photocatalysts," Chemical Society Reviews, vol. 45, no. 9, pp. 2603-2636, 2016.
    [23]黃世琦, "二氧化鈦中空球及添加CTAB 於光降解之影響及研究, " 化學工程研究所, 中興大學,2015年,2015.
    [24]F. Zhou, H. Song, H. Wang, S. Komarneni, and C. Yan, "N-doped TiO2/sepiolite nanocomposites with enhanced visible-light catalysis: Role of N precursors," Applied Clay Science, vol. 166, pp. 9-17, 2018.
    [25]catalysis: Role of N precursors X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, "Defective TiO 2 with oxygen vacancies: synthesis, properties and photocatalytic applications," Nanoscale, vol. 5, no. 9, pp. 3601-3614, 2013.
    [26]D. Cronemeyer, "Infrared absorption of reduced rutile TiO 2 single crystals," Physical Review, vol. 113, no. 5, p. 1222, 1959.
    [27]K. Ghosh, F. Wakim, and R. Addiss Jr, "Photoelectronic processes in rutile," Physical Review, vol. 184, no. 3, p. 979, 1969.
    [28]黃千鳴, "銳鈦礦二氧化鈦的光催化活性受氧空缺存在以及機械應變影響之理論分析與模擬," 材料科學與工程學研究所, 臺灣大學, 2010年, 2010.
    [29]I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, "Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal," Journal of Molecular Catalysis A: Chemical, vol. 161, no. 1-2, pp. 205-212, 2000.
    [30]郝亮, 张慧娜, 闫建成, 程丽君, 关苏军, 鲁云, "氧空位缺陷对光催化活性的影响及其机制," 天津科技大学学报, vol. 33, no. 5, pp. 1-13, 2018.
    [31]D. H. Kim, H. S. Hong, S. J. Kim, J. S. Song, and K. S. Lee, "Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying," Journal of Alloys and Compounds, vol. 375, no. 1-2, pp. 259-264, 2004.
    [32]T. Ali et al., "Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation," Materials Research Express, vol. 4, no. 1, p. 015022, 2017.
    [33]S. Sood, A. Umar, S. K. Mehta, and S. K. Kansal, "Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds," Journal of Colloid and Interface Science, vol. 450, pp. 213-223, 2015.
    [34]J. J. Pignatello, E. Oliveros, and A. MacKay, "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry," Critical Reviews in Environmental Science and Technology, vol. 36, no. 1, pp. 1-84, 2006.
    [35]E. Chamarro, A. Marco, and S. Esplugas, "Use of Fenton reagent to improve organic chemical biodegradability," Water research, vol. 35, no. 4, pp. 1047-1051, 2001.
    [36]S. Wang, "A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater," Dyes and Pigments, vol. 76, no. 3, pp. 714-720, 2008.
    [37]郑怀礼, 相欣奕, "光助 Fenton 氧化反应降解染料罗丹明 B," 光譜學與光譜分析, vol. 24, no. 5, pp. 726-729, 2004.
    [38]J. Herney-Ramirez, M. A. Vicente, and L. M. Madeira, "Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review," Applied Catalysis B: Environmental, vol. 98, no. 1-2, pp. 10-26, 2010.
    [39]L. Oliveira et al., "A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms," Applied Catalysis A: General, vol. 316, no. 1, pp. 117-124, 2007.
    [40]M. Kasiri, H. Aleboyeh, and A. Aleboyeh, "Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst," Applied Catalysis B: Environmental, vol. 84, no. 1-2, pp. 9-15, 2008.
    [41]Q. Liao, J. Sun, and L. Gao, "Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 345, no. 1-3, pp. 95-100, 2009.
    [42]B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo, "Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst," Journal of Hazardous Materials, vol. 176, no. 1-3, pp. 569-574, 2010.
    [43]J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, and X. Gao, "Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation," Journal of Molecular Catalysis A: Chemical, vol. 261, no. 1, pp. 131-138, 2007.
    [44]张凤君, 刘卓嫡, 刘兆烘, 贾春玉, 赵旭, TiO2光催化劑改性研究進展 ,科技導報(31卷11期), 66-71,2001
    [45]J. Mahy et al., "Highly efficient low-temperature N-doped TiO2 catalysts for visible light photocatalytic applications," Materials, vol. 11, no. 4, p. 584, 2018.
    [46]S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, and Y. Wei, "The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell," Solar Energy, vol. 76, no. 6, pp. 745-750, 2004.
    [47]L. Shi et al., "Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B," Ceramics International, vol. 40, no. 2, pp. 3495-3502, 2014.
    [48]K.-H. Park, E. M. Jin, H. B. Gu, S. E. Shim, and C. K. Hong, "Effects of HNO3 treatment of TiO2 nanoparticles on the photovoltaic properties of dye-sensitized solar cells," Materials Letters, vol. 63, no. 26, pp. 2208-2211, 2009.
    [49]T. Ohno, Y. Masaki, S. Hirayama, and M. Matsumura, "TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light," Journal of Catalysis, vol. 204, no. 1, pp. 163-168, 2001.

    無法下載圖示 校內:2024-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE