簡易檢索 / 詳目顯示

研究生: 賴韋翔
Lai, Wei-Xiang
論文名稱: 碳擔體形態及表面處理對直接甲醇燃料電池性能之影響
Effects of Morphology and Surface Treatment of Carbon Supports on the Performance of Direct Methanol Fuel Cell
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 123
中文關鍵詞: 表面處理海膽狀碳材碳擔體直接甲醇燃料電池中孔洞碳材
外文關鍵詞: surface treatment, mesoporous carbon, urchin like carbon, carbon support, direct methanol fuel cell
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直接甲醇燃料電池為一直接將化學能轉換成電能的一種發電系統,因其潔淨、高效率,在發展上有很大的潛力。碳擔體在燃料電池中扮演重要的腳色,關係著觸媒的分散效果、電池的導電性及觸媒的活性。本研究主要利用不同形態及不同表面處理的碳材作為觸媒擔體做一系列的研究,並以PTFE摻入電池氣體擴散層觀察親疏水性對電池的影響。本研究利用三極式系統對電池進行放電性能測試,以陰陽兩極的極化曲線作個別的分析,並與半電池系統的結果互相比較。
      研究發現7.43 wt% PTFE處理的碳紙具有最佳的單電池放電性能。經過鹽酸處理的碳擔體,可能因為具有較高的親水性,可有效的提升陽極效能;而經過硝酸處理的碳擔體,可能因其親水性高,半電池雖有很高的陽極電化學活性,但會使甲醇滲透現象加劇,且因其金屬微粒接近3 nm,適於陰極氧氣的還原,因而用於陰極而不使用於陽極,能使單電池最大功率密度提昇33%。
      在中孔洞碳擔體製備的觸媒中,高比表面積的MC2具有最高的單電池效能,其電池效能略優於碳黑製備的觸媒,且在半電池系統具有較負的陽極氧化起始電位,活性較高。實心狀中孔碳雖然半電池具有最高的活性,但可能因熱壓遮蓋部分孔洞及觸媒,使得單電池效能不好。在碳材表面成長奈米碳管的海膽狀碳材製備的觸媒,能有效的降低電池的電阻,增進電池的效能。

    Direct methanol fuel cell (DMFC) was a type of power generating system that can directly transfer chemical energy to electrical energy. It has a potential to developing a power generating system because it was clean and effective. In DMFC system, carbon support played an important role in the distribution of metal grains, conductivity of fuel cell, and activity of catalysts. The aims of this research was focused on the effects of morphology, surface treatment of carbon supports, and hydrophilic/hydrophobic behavior of gas diffusion layer. The letter was studied by PTFE treatment. Three-electrodes system was applied to analyze anode and cathode. The results of the three-electrodes system were compared with the results from half cell system.
    In the study, the carbon paper treated by 7.43 wt% of PTFE showed the best performance for anode gas diffusion layer. Carbon supports treated by HCl showed good performance for anode catalyst probably because of the increase of hydrophilicity. Carbon supports treated by HNO3 also had high hydrophilicity and electrochemical activity for methanol oxidation in half cell system, but it was not good for anode catalyst in fuel cell because of serious crossover of methanol. The results also showed that catalysts on HNO3-treated carbon supports were suitable for the reduction of oxygen because the size of metal grains was near 3nm. As a result, the maximum power density of HNO3-treated carbon supports was 33% larger than that of non-treated carbon supports.
    In the study of mesoporous carbons, MC2, had the best cell performance with the highest specific surface area. Because of very negative onset potential for methanol oxidation, MC2 showed better cell performance and electrochemical activity than carbon black. The solid ball type of mesoporous carbon had higher electrochemical activity than other mesoporous carbon in half cell system. However, its cell performance was bad probably because the part of the pores were broken during hot pressing. Urchin like carbon, which was fabricated by growing carbon nanotube on the surface of mesoporous carbon, showed higher cell performance than mesoporous carbon before carbon nanotube growth because of higher electric conductivity than other types of carbon supports.

    摘要…… ............................................................................................................ I Abstract.. ......................................................................................................... III 致謝…… .......................................................................................................... V 目錄…… ......................................................................................................... VI 圖目錄… ......................................................................................................... XI 表目錄… .....................................................................................................XVII 第一章 緒論 .................................................................................................... 1 1.1 燃料電池簡介 .............................................................................. 1 1.1.1 燃料電池特點 ....................................................................... 2 1.1.2 燃料電池種類 ....................................................................... 3 1.1.3 現今全球及台灣在燃料電池的發展 ................................... 7 1.2 直接甲醇燃料電池 .................................................................... 10 1.2.1 甲醇滲透現象(Methanol Crossover) .................................. 10 1.2.2 質子交換膜 ......................................................................... 11 1.2.3 陽極觸媒材料 ..................................................................... 15 1.2.4 陰極觸媒材料 ..................................................................... 17 1.2.5 觸媒擔體 ............................................................................. 17

    1. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 133 (1989).
    2. Frano Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
    3. J. Giner, C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, pp. 1124-1130 (1969).
    4. 鄭煜騰,萬瑞霙,林修正,"酸性燃料電池的製成研究",能源季刊,第二十五卷,第四期,161頁(1995)。
    5. O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem., Vol. 22, pp. 995-1001 (1992).
    6. E. A. Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., Vol. 135, pp. 2209-2214 (1998).
    7. 李國霖,"熔融碳酸鹽燃料電池的研發",能源季刊,第二十四卷,第四期,57頁(1997)。
    8. K. Scott, W. M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, Vol. 79, pp. 43-59 (1999).
    9. A. Biyikoglu, “Review of Proton Exchange Membrane Fuel Cell Models”, Int. J. Hydrogen Energy, Vol. 30, pp. 1181-1212 (1998).
    10. U. B. Demirci, “Direct liquid-feed fuel cells: thermodynamic and environmental concerns”, J. Power sources, Vol. 169, pp. 239-246 (2007).
    11. A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 15-16 (1989).
    12. 鄭煜騰,鄭耀宗,"質子交換膜型燃料電池的製造技術",能源季刊,第二十七卷,第二期,118頁(1997)。
    13. A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 32-37 (1989).
    14. 楊志忠,林頌恩,韋文誠,"燃料電池的發展現況",科學發展,367期,30-33頁(2003)。
    15. H. Uchida, Y. Mizuno, M. Watanabeb, “Suppression of Methanol Crossover and Distribution of Ohmic Resistance in Pt-Dispersed PEMs under DMFC Operation”, J. Electrochem. Soc., Vol. 149, pp. 682-687 (2002).
    16. S. Eccarius, B. L. Garcia, C. Hebling, J. W. Weudner, “Experimental Validation of a Methanol Crossover Model in DMFC applications”, J. Power Sources, Vol. 179, pp. 723-733 (2008)
    17. S. Hikita, K. Yamane, Y. Makajima, “Measurement of Methanol Crossover in Direct Methanol Fuel Cell”, Jase Review, Vol. 22, pp. 151-156 (2001).
    18. Z. Ogumi, Tohru Kuroe, Z. I. Takahara, “Gas Permeation in SPE Method - Ⅱ. Oxygen and Hydrogen Permeation through Nafion”, J. Electrochem. Soc., Vol. 132, pp. 2601-2605 (1985).
    19. H. Huang, P. K. Dasgupta, Z. Genfa, J. Wang, “Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Anal. Chem., Vol. 68, pp. 2062-2066 (1996).
    20. J. S. Do., R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators, Vol.37, pp. 19-26 (1996).
    21. L. J. Hobson, H. Ozu, M. Yamaguchi, “Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 148, pp. 1185-1190 (2001).
    22. Z. G. Shao, X. Wang, I. M. Hsing, “Composite Nafion/polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell”, J. Membr. Sci., Vol. 210, pp. 147-153 (2002).
    23. Z. G. Shao, X. Wang, I. M. Hsing, “Nafion Membrane Coated with Sulfonated Polyvinyl alcohol.-Nafion Film for Direct Methanol Fuel Cells”, Electrochem. and Solid-State Letters, Vol. 5, pp. 185-187 (2002).
    24. Y. M. Kim, K. W. Park, J. H. Choi, I. S. Park, Y. E. Sung, “A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration Methanol Fuel in DMFC”, Electrochem. Commun., Vol. 5, pp. 571-574 (2003).
    25. H. L. Lin, T. L. Yu, L. N. Huang, L. C. Chen, K. S. Shen, G. B. Jung, “Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications”, J. Power Sources, Vol. 150, pp. 11-19 (2005).
    26. W. H. Lizcano-Valbuena, V. A. Paganin , C. A. P. Leite, F. Galembeck, E. R. Gonzalez, “Catalysts for DMFC : Relation between Morphology and Electrochemical Performance”, Electrochim. Acta, Vol. 48, pp. 3869-3878 (2003).
    27. M. S. Loffler, H. Natter, R. Hempelmann, K. Wippermann, “Preparation and Characterisation of Pt-Ru Model Electrodes for the Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 3047-3051 (2003).
    28. J. H. Choi, K. W. Park, H. K. Lee, Y. M. Kim, J. S. Lee, Y. E.un Sung, “Nano-composite of PtRu Alloy Electrocatalyst and Electronically Conducting Polymer for use as the Anode in A Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 2781-2789 (2003).
    29. W. H. Lizcano-Valbuena, V. A. Paganin, E. R. onzalez, “Methanol Electro-Oxidation on Gas Diffusion Electrodes Repared with Pt/Ru/C Catalysts”, Electrochim. Acta, Vol. 47, pp. 3715-3722 (2002).
    30. I. Honmaz, T. Toda, “Temperature Dependence of Kinetics of Methanol Electro-oxidation on PtSn Alloys”, J. Electrochem. Soc., Vol.150, pp. 1689-1692 (2003).
    31. J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
    32. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, Vol. 102, pp. 9997-10003 (1998).
    33. S. D. Lin, T. C. Hsiao, “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem., Vol. 103, pp. 97-103 (1999).
    34. T. E. Shubina, M. T. M. Koper, “Quantum-chemical calculations of CO and OH interacting with Bimetallic Surfaces”, Electrochim. Acta, Vol. 47, pp. 3621-3628 (2002).
    35. M. S. Liao, C. R. Cabrera, Y. Ishikawa, “A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M (M = Ru, Sn, Ge) Clusters”, Surf. Sci., Vol. 445, pp. 267-282 (2000).
    36. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon supported Pt–Co Alloys as Methanol-resistant Oxygen Reduction Electrocatalysts for Direct Methanol Fuel Cells”, Applied Catalysis B: Environmental, Vol. 57, pp. 283-290 (2005).
    37. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Method as Electrocatalysts for DMFCs”, Electrochem. and Solid-State Letters, Vol. 8, pp. 226-230 (2005).
    38. W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G.Q. Suna, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, “Performance Comparison of Low-temperature Direct Alcohol Fuel Cells with different Anode Catalysts”, J. Power Sources, Vol. 126, pp. 16-22 (2004).
    39. J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, Y. E. Sung, “Methanol Electro-oxidation and Direct Methanol Fuel Cell using Pt/Rh and Pt/Ru/Rh Alloy Catalysts”, Electrochim. Acta, Vol. 50, pp. 787-790 (2004).
    40. Kookil Han, Jaeseung Lee, Hasuck Kim, “Preparation and characterization of high metal content Pt-Ru alloy catalysts on various carbon blacks for DMFCs”, Electrochimica Acta, Vol. 52, pp. 1697-1702 (2006).
    41. Shou-Kai Wang, Fangang Tseng, Tsung-Kuang Yeh, Ching-Chang Chieng, “Electrocatalystic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC”, J. Power Sources, Vol. 167, pp. 413-419 (2007).
    42. King-Tsai Jeng, Chun-Ching Chien, Ning-Yih Hsu, Shi-Chern Yen, Shean-Du Chiou, Su-Hsine Lin and Wan-Min Huang, “Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition”, J. Power Sources, Vol. 160, pp. 97-104 (2006).
    43. Hirotoshi Yamada, Taiki Hirai, Isamu Moriguchi, Tetsuichi Kudo, “A highly active Pt catalyst fabricated on 3D porous carbon”, J. Power Sources, Vol. 164, pp. 538-543 (2007).
    44. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 149, pp. 1299-1304 (2002).
    45. M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on Methanol or Reformate Gas”, Electrochim. Acta, Vol. 43, pp. 3637-3644 (1998).
    46. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza, “Development and Performance Characterization of New Electrocatalyst for PEMFC”, J. Power Sources, Vol. 106, pp. 206-214 (2002).
    47. M. Kishida, K. Umakoshi, J. I. Ishiyama, H. Nagata, K. Wakabayashi, “Hydrogenation of Carbon Dioxide over Metal Catalysts prepared using Microemulsion”, Catal. Today, Vol. 29, pp. 355-359 (1996).
    48. G. Neri, C. Milone, A. Donato, L. Mercadante, A. M. Visce, “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol., Vol. 60, pp. 83-88 (1994).
    49. G. Neri, C. Milone, S. Galvagno, A. P. J. Pijpers, J. Schwank, “Characterization of Pt-Sn/carbon Hydrogenation Catalysts”, Applied Catalysis A: General, Vol. 227, pp. 105-115 (2002).
    50. A. E. Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo, “Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO oxidation”, Catalysis Today, Vol. 62, pp. 337-346 (2000).
    51. A. Honji, T. Mori, Y. Hishinuma, “Platinum Dispersed on Carbon Catalyst for a Fuel Cell: A Preparation with Sorbitan Monolaurate”, J. Electrochem. Soc., Vol. 137, pp. 2084-2088 (1990).
    52. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科技大學化學工程系碩士論文 (2002)。
    53. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, “Anovel Route to Prepare Stable Pt-Ru/C Electrocatalysts for Polymer Electrolyte Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 255-262 (2002).
    54. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of A Carbon-supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells”, J. Power Sources, Vol. 55, pp. 159-166 (1995).
    55. K. Scott, W. M. Taama, P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell”, J. Applied Electrochemistry, Vol. 28, pp. 1389-1397 (1998).
    56. Frano Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 94 (2005).
    57. 黃朝榮、林修正,”燃料電池的心臟,科學發展”,367期,26頁,(2003)。
    58. 陳慕辰,“直接甲醇燃料電池陰陽兩極之阻抗分析”,國立成功大學化學工程系碩士論文 (2004)。
    59. H. Dohle, J. Divisek, R. Jung, “Process engineering of the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 86, pp. 469-477 (2002).
    60. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model”, J. Electrohem. Soc., Vol. 138, pp. 2334-2342 (1989).
    61. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,台北市,8-5頁 (2004)。
    62. T. Freelink, W. Visscher, J. A. R.n Veen, “On the role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt”, Surf. Sci., Vol.335, pp. 353-360 (1995).
    63. R. Hodgson, H. Oman, “Battery data for use in expert systems”, J. Power Sources, Vol. 17, pp. 171-180 (1998).
    64. J. H. Choi, K.W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni and Pt/Ru/Ni Anode Electrocatalysts at different Temperature for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
    65. Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, “Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode”, J. Am. Chem. Soc., Vol. 125, pp. 3680-3681 (2003)
    66. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 23 (1989).
    67. James Larminie, Andrew Disks, “Fuel Cell system Explained”, John Wiley & Son, p. 46 (2001).
    68. Allen J. Bard, Larry R. Faulkner, “ Electrochemical Methods: Fundamentals and Applications”, John Wiley & Son, p. 100 (2001).
    69. M. D. Bernardi, W. V. Mark, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp. 2477-2491 (1992).
    70. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. springer, S. Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047 (1993).
    71. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R. Tunold, “Influence of Diffusion Layer Properties on Low Temperature DMFC”, J. Power Sources, Vol. 127, pp. 187-196 (2004).
    72. K. W. Park, B. K. Kwon, J. H. Choi, I. S. Park, Y. M. Kim, Y. E. Sung, “New RuO2 and Carbon–RuO2 Composite Diffusion Layer for use in Direct Methanol Fuel Cells”, J. Power Sources, Vol. 109, pp. 439-445 (2002).
    73. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten, “Novel Method for Investigation of Two-phase Flow in Liquid Feed Direct Methanol Fuel Cells using an Aqueous H2O2 Solution”, J. Power Sources, Vol. 125, pp. 1-9 (2004).
    74. J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., Vol. 142, pp. 2670-2674 (1995).
    75. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, JOHN WILEY & SONS, INC., p. 27 (2001).
    76. J. S. Newman, “Electrochemical Systems”, Englewood Cliffs, Prentice-Hall, Inc., pp. 380-382 (1991).
    77. 薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文 (2003)。
    78. J. T. Muller, P. M. Urban, ”Impedance studies of Direct Methanol Fuel Cell Anodes”, J. Power Sources, Vol. 84, pp. 157-160 (1999).
    79. J. C. Amphlett, B. A. Peppley, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell”, J. Power Sources, Vol. 96, pp. 204-213 (2001).
    80. C. K. Poh, S. H. Lim, H. Pan, J. Lin, J. Y. Lee, “Citric Acid Functionalized Carbon Materials for Fuel Cell Applications”, J. Power Sources, Vol. 176, pp. 70-75 (2008).
    81. S. Kim, S. J. Park, “Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters”, Electrochimica Acta, Vol. 52, pp. 3013-3021 (2007).
    82. S. K. Wang, F. Tseng, T. K. Yeh, C. C. Chieng, “Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC”, J. Power sources, Vol. 167, pp. 413-419 (2007).
    83. L. Calvillo, R. Moliner, P. L. Cabot, J. J. Quintana, “Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells”, J. Power Sources, Vol. 169, pp. 59-64 (2007).
    84. G. Q. Lu, C. Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell”, J. Power Sources, Vol. 134, pp. 33-40 (2004).
    85. J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, P. Liu, “The influence of anode gas diffusion layer on the performance of low-temperature DMFC”, J. Power sources, Vol. 168, pp. 453-458 (2007).
    86. S. Brunauer, “The Adsorption of Gases and Vapor. Vol. I, Physical Adsorption ”, Princeton University, Princeton, Now York (1943).
    87. S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., Vol. 60(2), pp. 309-319 (1938).
    88. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., Vol. 73, pp. 373-380 (1951).
    89. A. Kabbabi, F. Gloaguen, F. Andolfatto, R. Durand, “Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane”, J. Electroanal. Chem., Vol. 373, pp. 251-254 (1994).

    下載圖示 校內:2009-08-07公開
    校外:2009-08-07公開
    QR CODE