簡易檢索 / 詳目顯示

研究生: 阮明安
Nguyen Minh An
論文名稱: The impacts of big data predictive analytics capabilities (BDPA) on firm's sustainable performance
The impacts of big data predictive analytics capabilities (BDPA) on firm's sustainable performance
指導教授: 林彣珊
Lin, Wen-Shan
學位類別: 碩士
Master
系所名稱: 管理學院 - 國際經營管理研究所
Institute of International Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 63
外文關鍵詞: Big data predictive analytics capabilities (BDPA), big data analytics (BDA), Sustainable performance, Top management support (TMS), Strategic resources
相關次數: 點閱:41下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Big data, more than ever, has been driving significant changes in how organizations process, store and analyze data. However, how to use and exploit big data technology in business is still a growing concern. Our study tries to capture the inter-relationships between resources, big data predictive analytics capabilities and sustainable performance of the firm by employing the resource-based view theory, with top management support being the mediating variable. Data from individuals working in big data environment is gathered by using survey method, which will then be analyzed by SmartPLS to test the full effect of the model. The results confirm that top management support has mediation effect for the relationship between tangible resources and intangible ones with big data predictive analytics. Finally, our findings show that firms that are having the big data predictive analytics capabilities can enhance the three dimensions of sustainability operation, which are social, environment and economics.

    ABSTRACT I ACKNOWLEDGEMENT II Table of Contents III List of Tables V List of Figures VI CHAPTER ONE INTRODUCTION 1 1.1 Research Background. 1 1.2 Research Gap and Questions. 4 1.3 Research Contributions. 5 1.4 Research Procedures. 6 CHAPTER TWO LITERATURE REVIEW 7 2.1 Theoretical Background. 7 2.1.1 Big Data and Relevant Terms. 7 2.1.2 Resource-Based View Theory. 10 2.2 Hypothesis Development. 13 2.2.1 Firm’s Strategic Resources. 13 2.2.2 Mediation Effect of Top Management Support for the Relationship Between Strategic Resources and BDPA Capabilities. 19 2.2.3 Sustainable Manufacturing Practices and Impacts of BDPA. 21 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 26 3.1 Conceptual Framework. 26 3.2 Summary of Hypotheses. 27 3.3 Survey Design and Measurement Items. 28 3.3.1 Survey Design and Measurement Items. 28 CHAPTER FOUR RESEARCH RESULTS 32 4.1 Descriptive Statistics. 32 4.1.1 Data Collection. 32 4.1.2 Characteristics of Respondents. 33 4.1.3 Characteristics of Firms. 34 4.1.4 Analysis of Descriptive Statistics. 36 4.2 Common Method Bias. 37 4.3 Measurement Model. 39 4.3.1 Reliability and Convergent Validity of Constructs. 39 4.3.2 Discriminant Validity. 42 4.4 Structural Model. 43 4.4.1 Multicollinearity Test. 44 4.4.2 Path Coefficients and Hypothesis Testing. 44 4.4.3 Evaluation of Coefficient of Determination (R2) Value, Predictive Relevance (Q2) and Model Fit. 49 CHAPTER FIVE CONCLUSION AND SUGGESTIONS 51 5.1 Study Discussion and Conclusion. 51 5.2 Theoretical Implications and Managerial Contributions. 53 5.3 Limitations and Future Research. 53 References 56 Appendices 62 Appendix 1: Letter of Research Purpose 62 Appendix 2: Rules for US respondents on Mturk 63

    Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research (Vol. 25, pp. 443-448): INFORMS.
    Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131.
    Al-Kurdi, O. F., El-Haddadeh, R., & Eldabi, T. (2020). The role of organisational climate in managing knowledge sharing among academics in higher education. International Journal of Information Management, 50, 217-227.
    Auschitzky, E., Hammer, M., & Rajagopaul, A. (2014). How big data can improve manufacturing. McKinsey & Company, 822.
    Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120.
    Beulke, D. (2011). Big data impacts data management: The 5 vs of big data. Available from: Big Data Impacts Data Management: The 5Vs of Big Data, accessed, 21.
    Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: an empirical investigation. MIS Quarterly, 24(1), 169-196.
    Bollier, D., & Firestone, C. M. (2010). The promise and peril of big data: Aspen Institute, Communications and Society Program Washington, DC.
    Brundtland, G. H., & Khalid, M. (1987). Our common future: Oxford University Press, Oxford, UK.
    Chadwick, C., Super, J. F., & Kwon, K. (2015). Resource orchestration in practice: CEO emphasis on SHRM, commitment‐based HR systems, and firm performance. Strategic Management Journal, 36(3), 360-376.
    Chae, H.-C., Koh, C. E., & Prybutok, V. R. (2014). Information technology capability and firm performance: contradictory findings and their possible causes. MIS Quarterly, 38(1), 305-326.
    Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32(4), 4-39.
    Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 1165-1188.
    Chen, M., Mao, S., Zhang, Y., & Leung, V. C. (2014). Big data: related technologies, challenges and future prospects: (Vol. 100). New York: Springer.
    Chowdhury, S., Dey, P. K., Rodríguez-Espíndola, O., Parkes, G., Tuyet, N. T. A., Long, D. D., & Ha, T. P. (2022). Impact of Organisational Factors on the Circular Economy Practices and Sustainable Performance of Small and Medium-sized Enterprises in Vietnam. Journal of Business Research, 147(0), 362-378.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates. Hillsdale, NJ, 20-26.
    Cruz-Jesus, F., Pinheiro, A., & Oliveira, T. (2019). Understanding CRM adoption stages: empirical analysis building on the TOE framework. Computers in Industry, 109(0), 1-13.
    Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434-449.
    Drolet, A. L., & Morrison, D. G. (2001). Do we really need multiple-item measures in service research? Journal of Service Research, 3(3), 196-204.
    Dubey, R., Gunasekaran, A., & Ali, S. S. (2015). Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. International Journal of Production Economics, 160(0), 120-132.
    Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource‐based view and big data culture. British Journal of Management, 30(2), 341-361.
    Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. Journal of Cleaner Production, 196(0), 1508-1521.
    Dubey, R., Luo, Z., Gunasekaran, A., Akter, S., Hazen, B. T., & Douglas, M. A. (2018). Big data and predictive analytics in humanitarian supply chains: Enabling visibility and coordination in the presence of swift trust. The International Journal of Logistics Management, 29(2), 485-512
    Dutta, D., & Bose, I. (2015). Managing a big data project: the case of ramco cements limited. International Journal of Production Economics, 165(0), 293-306.
    El-Haddadeh, R., Osmani, M., Hindi, N., & Fadlalla, A. (2021). Value creation for realising the sustainable development goals: Fostering organisational adoption of big data analytics. Journal of Business Research, 131(0), 402-410.
    Flammer, C. (2013). Corporate social responsibility and shareholder reaction: The environmental awareness of investors. Academy of Management Journal, 56(3), 758-781.
    Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452.
    Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130
    Garetti, M., & Taisch, M. (2012). Sustainable manufacturing: trends and research challenges. Production Planning & Control, 23(2-3), 83-104.
    Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
    George, G., Haas, M. R., & Pentland, A. (2014). Big data and management (Vol. 57, pp. 321-326). NY :Academy of Management Briarcliff Manor.
    George, G., McGahan, A. M., & Prabhu, J. (2012). Innovation for inclusive growth: Towards a theoretical framework and a research agenda. Journal of Management Studies, 49(4), 661-683.
    Ghasemaghaei, M. (2018). Improving organizational performance through the use of big data. Journal of Computer Information Systems, 60(2), 1-14
    Ghasemaghaei, M. (2021). Understanding the impact of big data on firm performance: The necessity of conceptually differentiating among big data characteristics. International Journal of Information Management, 57(0), 102055-102080.
    Grant, R. M. (1991). The resource-based theory of competitive advantage: implications for strategy formulation. California Management Review, 33(3), 114-135.
    Grewal, R., & Slotegraaf, R. J. (2007). Embeddedness of organizational capabilities. Decision Sciences, 38(3), 451-488.
    Guide Jr, V. D. R., & Ketokivi, M. (2015). Notes from the Editors: Redefining some methodological criteria for the journal⋆ (Vol. 37, pp. v-viii): Wiley Online Library.
    Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70(0), 308-317.
    Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis 6th Edition. Pearson Prentice Hall. New Jersey. Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87(1), 49-74.
    Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616-632.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2012). Partial least squares: the better approach to structural equation modeling? Long Range Planning, 45(5-6), 312-319.
    Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
    Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123.
    Han, Z., & Huo, B. (2020). The impact of green supply chain integration on sustainable performance. Industrial Management & Data Systems, 120(4), 657-674.
    Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., . . . Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182-209.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
    Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: A Multidisciplinary Journal, 6(1), 1-55.
    Iftikhar, A., Ali, I., & Shah, A. (2021). The impact of big data analytics and firm's operational performance: the mediating role of knowledge management process. Paper presented at the 2nd Asia Pacific International Conference on Industrial Engineering and Operations Management, Indonesia.
    Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 512-538
    Jiang, P., Winkley, J., Zhao, C., Munnoch, R., Min, G., & Yang, L. T. (2014). An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Systems Journal, 10(3), 1147-1159.
    Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013). Big data: Issues and challenges moving forward. Paper presented at the 2013 46th Hawaii international conference on system sciences, Wailea, HI, USA
    Kasaven, L., Saso, S., Barcroft, J., Yazbek, J., Joash, K., Stalder, C., . . . Bourne, T. (2021). Authors' reply Re: Implications for the future of Obstetrics and Gynaecology following the COVID-19 pandemic: a commentary. BJOG: an International Journal of Obstetrics and Gynaecology, 128(3), 616-617.
    Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for information Systems, 13(7), 546-580
    Lai, Y., Sun, H., & Ren, J. (2018). Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management: An empirical investigation. The International Journal of Logistics Management, 676-703
    Mani, M., Lyons, K. W., & Gupta, S. (2014). Sustainability characterization for additive manufacturing. Journal of Research of the National Institute of Standards and Technology, 119(0), 419-428.
    Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management, 33(1-2), 76-97.
    Maroufkhani, P., Iranmanesh, M., & Ghobakhloo, M. (2022). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems.
    Maroufkhani, P., Tseng, M.-L., Iranmanesh, M., Ismail, W. K. W., & Khalid, H. (2020). Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. International Journal of Information Management, 54(0), 102190-102212
    Mawed, M., & Al-Hajj, A. (2017). Using big data to improve the performance management: a case study from the UAE FM industry. Facilities, 35(13), 746-765
    McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68.
    Michela, E., Rosenberg, J. M., Kimmons, R., Sultana, O., Burchfield, M. A., & Thomas, T. (2022). “We Are Trying to Communicate the Best We Can”: Understanding Districts’ Communication on Twitter During the COVID-19 Pandemic. AERA Open, 8(0), 23328584221078542.
    Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169.
    Mithas, S., Lee, M. R., Earley, S., Murugesan, S., & Djavanshir, R. (2013). Leveraging big data and business analytics [Guest editors' introduction]. IT Professional, 15(6), 18-20.
    Moktadir, M. A., Ali, S. M., Paul, S. K., & Shukla, N. (2019). Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh. Computers & Industrial Engineering, 128, 1063-1075.
    Nelson, R. R., & Winter, S. G. (1982). The Schumpeterian tradeoff revisited. The American Economic Review, 72(1), 114-132.
    Nguyen, T., Li, Z., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264.
    Nonaka, I., Toyama, R., & Konno, N. (2000). SECI, Ba and leadership: a unified model of dynamic knowledge creation. Long Range Planning, 33(1), 5-34.
    Oztekin, A. (2017). Big data analytics for creating a marketing strategy in healthcare industry. Annals of Operations Research, 270(1/2), 1-XX.
    Pan, M.-J., & Jang, W.-Y. (2008). Determinants of the adoption of enterprise resource planning within the technology-organization-environment framework: Taiwan's communications industry. Journal of Computer Information Systems, 48(3), 94-102.
    Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data and business analytics ecosystems: paving the way towards digital transformation and sustainable societies (Vol. 16, pp. 479-491): Springer.
    Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers, 20(2), 209-222.
    Porter, M. E., & Van der Linde, C. (1995). Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118.
    Ragu-Nathan, B. S., Apigian, C. H., Ragu-Nathan, T., & Tu, Q. (2004). A path analytic study of the effect of top management support for information systems performance. Omega, 32(6), 459-471.
    Ramanathan, R., He, Q., Black, A., Ghobadian, A., & Gallear, D. (2017). Environmental regulations, innovation and firm performance: A revisit of the Porter hypothesis. Journal of Cleaner Production, 155(0), 79-92.
    Ross, S. M. (2013). Applied probability models with optimization applications: NY: Courier Corporation.
    Russom, P. (2011). Big data analytics. TDWI Best Practices Report, Fourth Quarter, 19(4), 1-34.
    Sanchez, A. M., & Pérez, M. P. (2001). Lean indicators and manufacturing strategies. International Journal of Operations & Production Management, 21(11), 1433-1452
    Santini, Z. I., Jose, P. E., Cornwell, E. Y., Koyanagi, A., Nielsen, L., Hinrichsen, C., . . . Koushede, V. (2020). Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): a longitudinal mediation analysis. The Lancet Public Health, 5(1), e62-e70.
    Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair Jr, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115.
    Schaller, T. K., Patil, A., & Malhotra, N. K. (2014). Alternative Techniques for Assessing Common Method Variance: An Analysis of the Theory of Planned Behavior Research. Organizational Research Methods, 18(2), 177-206.
    Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach: John Wiley & Sons.
    Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553-572.
    Sirmon, D. G., Hitt, M. A., & Ireland, R. D. (2007). Managing firm resources in dynamic environments to create value: Looking inside the black box. Academy of Management Review, 32(1), 273-292.
    Suoniemi, S., Meyer-Waarden, L., Munzel, A., Zablah, A. R., & Straub, D. (2020). Big data and firm performance: The roles of market-directed capabilities and business strategy. Information & Management, 57(7), 103365-103383
    Teece, D. J. (2014). The foundations of enterprise performance: Dynamic and ordinary capabilities in an (economic) theory of firms. Academy of Management Perspectives, 28(4), 328-352.
    Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533.
    Turban, E., Sharda, R., Delen, D., & King, D. (2013). Business Intelligence: Pearson New International Edition: Pearson Education Limited, USA
    Wade, M., & Hulland, J. (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1), 107-142.
    Wagner, B., & Svensson, G. (2014). A framework to navigate sustainability in business networks: The transformative business sustainability (TBS) model. European Business Review, 26(4), 340-367
    Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management (Vol. 34, pp. 77-84): Wiley Online Library.
    Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165(0), 234-246.
    Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J.-f., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70(0), 356-365.
    Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176(0), 98-110.
    White, D. S., Gunasekaran, A., & Ariguzo, G. C. (2013). The structural components of a knowledge-based economy. International Journal of Business Innovation and Research, 7(4), 504-518.
    Wu, K.-J., Liao, C.-J., Tseng, M.-L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties. Journal of Cleaner Production, 142(0), 663-676.
    Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q., Chen, X., & Zhang, T. (2015). A big data approach for logistics trajectory discovery from RFID-enabled production data. International Journal of Production Economics, 165(0), 260-272.
    Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 101(0), 572-591.

    下載圖示 校內:2023-08-23公開
    校外:2023-08-23公開
    QR CODE