| 研究生: |
高啟原 Kao, Chi-Yuan |
|---|---|
| 論文名稱: |
以金屬蒸氣真空弧離子佈植技術進行氧化鋅透明導電薄膜之製作 Fabrication of ion-implanted ZnO thin film with transparent conductive properties using metal vapor vacuum arc technique |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 離子佈植 、金屬蒸氣真空弧 、射頻磁控濺鍍 、透明導電薄膜 |
| 外文關鍵詞: | Transparent Conductive Oxide Thin Film, RF reactive magnetron sputtering, Ion Implantation, Metal Vapor Vacuum Arc |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電薄膜是一種吸收紫外光、穿透可見光與反射紅外線的材料,傳統上多使用氧化銦錫(ITO),然而,其製備成本仍高。所以有新的鍍膜材料或技術在發展,以取代氧化銦錫薄膜,如:ZnO:Al(AZO)。本研究利用金屬蒸氣真空弧(MeVVA)技術佈植氣化的鋁離子,使其改質氧化鋅(ZnO)成薄膜。藉由不同的鋁離子植入劑量與控制機台參數,進而改變ZnO薄膜的導電特性與透光度。實驗中使用一般鈉玻璃作為基板,並利用射頻磁控濺鍍(RF-MSD)系統沉積ZnO薄膜與對照組ZnO:Al(2%)薄膜,然後以MeVVA來改質ZnO薄膜。此技術可將前進的鋁離子穿透進入ZnO薄膜至深度數百奈米的表層。比較RF磁控濺鍍與MeVVA離子佈植兩種技術,其中,薄膜厚度、沉積速率、透光率、電性與佈植形貌對ZnO薄膜的特性有顯著的影響。藉由前述的參數選擇最佳調整來改質ZnO薄膜,並以ZnO:Al薄膜作為對照組。研究結果顯示:在基板不加熱以及厚度為261 nm的條件下,沉積出的ZnO薄膜電阻值高,但經由MeVVA離子佈植,在劑量為1.4×1016 ions/cm2時,可以改善ZnO薄膜之電阻值從3.02×107 Ω下降至3.03×104 Ω;並保有高透光率(91.5%,波長為550 nm),極具應用與發展之潛力。
Transparent conductive thin film is capable to absorb ultraviolet, transmit visible light and reflect infrared. Usually Tin-doped indium oxide (ITO) is primarily used, whereas the cost for the preparation the thin-film ITO is still too high. Novel coating materials or techniques are developing to replace the thin-film ITO such as Al-doped ZnO (AZO). In this study, we utilize metal vapor vacuum arc (MeVVA) technique that forward the vaporized aluminum ions implanted into zinc oxide (ZnO) as a thin solid film. By applying different ion-implanted doses and manipulating the operational parameters, the conductivity and optical property of the ZnO thin film can be improved. In the experiment, a glass substrate was used as the base, then a thin-film ZnO or ZnO:Al (2%, as a reference) was coated using RF reactive magnetron sputtering deposition (RF-MSD) system. The thin-film ZnO was then treated by MEVVA, with which the forward aluminum ions can penetrate the thin-film ZnO into a diffused layer of several hundreds nanometers depth. The film thickness, deposition rate, transparency, conductivity and surface morphology of the treated ZnO surface were significantly influenced by the employment of RF-MSD or MeVVA treatment. From the above-mentioned parameters, an optimized adjustment was chosen, while the RF-MSD-treated ZnO:Al (2%) film was referenced. Experimental result demonstrated that under the condition of non-thermal effect and the deposited ZnO coating of 261 nm, the conductivity of ZnO thin film was originally poor (3.02×107Ω). However after the vaporized aluminum ions implantation, the resistance of the ion-implanted ZnO decreased from 3.02×107 to 3.03×104 Ω. At the same time the transparency of the aluminum ions-implanted ZnO was mostly preserved (91.5% at the wavelength of 550 nm). Potentially it provides a method with highly promising applications.
[1] P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim and M. E. Motamedi, “Integrated Silicon Microbeam PI-FET Accelerometer’’, IEEE Transactions on Electron Devices, Vol. 29, pp. 27, 1982.
[2] E. S. Kim, R. S. Muller, “Ic-processed piezoelectric microphone”, IEEE Transactions on Electron Devices, Vol. 8, pp. 467, 1987.
[3] K. M. Lakin, J. S. Wang, “Acoustic bulk wave composite resonators”, Applied Physical Letter, Vol. 38, pp. 125-127, 1981.
[4] http://www.i-sis.org.uk/trappingLight.php
[5] M. Miura, “Crystallographic Character of ZnO Thin Films Formed at Low Sputtering Gas Pressure”, Japanese Journal of Applied Physics, Vol. 21, pp. 264, 1982.
[6] A. Baneriee, D. Wolf, S. Guha, Journal of Applied Physics, Vol.70, pp. 1692, 1991.
[7] F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, “Dual-ion-beam sputter deposition of ZnO films”, Journal of Applied Physics, Vol. 74, pp. 244, 1993.
[8] F. S. Mahmood, R. D. Gould, A. K. Hassan, and H. M. Salih, “DC properties of ZnO thin films prepared by RF magnetron sputtering”, Thin Solid Film, Vol. 270, pp. 376-379, 1995.
[9] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters”, Materials Science in Semiconductor Processing, vol. 2, pp. 247, 1999.
[10] T. Mitsuyu, S. Ono and K. Wasa, “Structures and SAW properties of RF-sputtered single-crystal films of ZnO on sapphire”, Journal of Applied Physics, vol. 51, pp. 2464–2470, 1980.
[11] J. Koike, H Tanaka and H. Ieki, “Quasi-Microwave Band Longitudinally Coupled Surface Acoustic Wave Resonator Filters Using ZnOiSapphire Substrate”, Japanese Journal of Applied Physics, Vol. 34, pp. 2678, 1995.
[12] W. T. Lim, C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates”, Thin Solid Films, Vol. 12, pp. 353, 1999.
[13] E. J. Mlttemeijer, “Materials science forum”, Trans Tech Publications Ltd, Vol. 166, pp. 431-449, 479-495, 1994.
[14] G. J. Rudzki, “Surface Finishing System”, American Society for Metal, Vol. 70, pp.161-169, 1983.
[15] M. Quirk, J. Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, ISBN, 0130815209, pp. 152-176, 475-513, 2001.
[16] 張俊彥,半導體元件物理與製作技術,高立圖書有限公司,414-507,1999。
[17] J. R. Rose,工業等離子體工程,科學出版社,128-148,1998。
[18] 楊明輝,工業材料,第179期,134,2001。
[19] A. N. H. Al-Ajili, S. C. Bayliss, “A study of the optical electrical and structural properties of reactively sputtered In2Ox and ITOx thin films”, Thin Solid Films, Vol. 305, pp. 116, 1997.
[20] C. D. Paine, “A study of low temperature crystallization of amorphous thin film indium-tin-oxide”, Journal of Applied Physics, Vol. 85, pp. 8445, 1999.
[21] M. Jin, D. Zhang, “Preparation and characterization of ITO films on polyimide by reactive evaporation at low temperature”, Applied Surface Science, Vol. 151, pp. 239, 1999.
[22] C. Terrier, J. P. Chatelon, “Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method”, Journal of Sol-Gel Science Technology, Vol. 10, pp. 75, 1997.
[23] K. H. Kim, S. W. Lee, “Effect of antimony addition on electric and optical properties of tin oxide films”, Journal of the American Ceramic Society, Vol. 77, pp. 915, 1994.
[24] A. E. Rakhshani, Y. Makdisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, Journal of Applied Physics, Vol. 83, pp. 1049, 1998.
[25] WJ communications, “Highly conductively and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films, Vol. 221, pp. 166-182, 1992.
[26] 王仁宏,李正中,PET塑膠片導電透光膜(ITO)應用、設計及製造,光訊,第80期,5,1999。
[27] 許國銓,科技玻璃-高性能透明導電膜玻璃,材料與社會,第84期,110,1993。
[28] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, Vol. 9, pp. 1-64, 1977.
[29] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, New York, 1995.
[30] 林昭憲,以電漿化學氣相沉積法蒸鍍氧化鋁薄膜之研究,國立成功大學材料科學及工程研究所碩士論文,4-10,1994。
[31] H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publishing, 1995.
[32] E. L. Paradis and A. J. Shuskus, “RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics”, Thin Solid Films, Vol.38, pp.131-141, 1976.
[33] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, “Low-loss ZnO Optical Waveguides for SAW-AO applications”, IEEE Transactions on Ultrasonics, Vol. 36, pp. 442-445, 1989.
[34] W. Water and S. Y. Chu, “Physical and Structure Properties of ZnO Sputtered Films”, Materials Letters, Vol. 55, pp. 67-72, 2002.
[35] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering”, Vacuum, Vol. 59, pp. 538-545, 2000.
[36] T. Minami, “New N-type Transparent Conducting Oxides”, MRS Bulletin, Vol. 25, pp.38-41, 2000.
[37] B. E. Sernelius, “Band-gap tailoring of ZnO by means of heavy Al doping”, Physical Review B, Vol. 37, pp. 10244-10248, 1998
[38] A. Sarkar, “Studies on electron transport properties and Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, Vol. 204, pp. 255-264, 1991.
[39] D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman and Hall, chap. 9, pp. 180, 1994
[40] V. Srikant and D. R. Clarke, “Optical Absorption edge of ZnO thin film: The effect of substrate”, J. Appl. Phys., Vol. 81, pp. 6357, 1997.
[41] J. Venables, “Nucleation and Growth of Thin Films”, Reports on progress in physics, Vol. 47, pp. 399-459, 1984.
[42] J. A. Thornton, “Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating”, Journal of Vacuum Science and Technology A, Vol. 11, pp. 666, 1974.
[43] J. A. Thornton, “Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings”, Journal of Vacuum Science and Technology A, Vol. 12, pp. 830, 1975.
[44] J. F. Ziegler, “Handbook of ion implantation technology”, North Holland, pp. 25-64, 1992.
[45] R. F. Hochman, “Ion planting and implantation”, American Society for Metal, pp. 115-123, 1985.
[46] Z. Tonghe, Z. Huixing, J. Changzhoua, “Industrialization of MEVVA source ion implantation”, Surface and Coatings Technology, Vol. 128-129, pp. 1-8, 2000.
[47] M. Farley, B. Simonton, “Ion Implantation Science and Technology”, Ion Implantation Technology Co., Yorktown, 1996.
[48] H. L. Liu, S. S. Gearhart, J. H. Booske, “Ultra-Shallow P+/N Junctions Formed by Recoil Implantation”, Journal of Electronic Materials, Vol. 27, pp. 1027, 1998.
[49] F. Spaepan and D. Turnbull, “Crystalline Process”, In Laser Annealing of Semicodncutors, Academic Press, New York, Chap. 2, 1982.
[50] K. B. Winterbon, “Ion Implantation Range and Energy Deposition Distributions Low Energies”, Plenum Press, New York, 1975.