簡易檢索 / 詳目顯示

研究生: 高啟原
Kao, Chi-Yuan
論文名稱: 以金屬蒸氣真空弧離子佈植技術進行氧化鋅透明導電薄膜之製作
Fabrication of ion-implanted ZnO thin film with transparent conductive properties using metal vapor vacuum arc technique
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 離子佈植金屬蒸氣真空弧射頻磁控濺鍍透明導電薄膜
外文關鍵詞: Transparent Conductive Oxide Thin Film, RF reactive magnetron sputtering, Ion Implantation, Metal Vapor Vacuum Arc
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   透明導電薄膜是一種吸收紫外光、穿透可見光與反射紅外線的材料,傳統上多使用氧化銦錫(ITO),然而,其製備成本仍高。所以有新的鍍膜材料或技術在發展,以取代氧化銦錫薄膜,如:ZnO:Al(AZO)。本研究利用金屬蒸氣真空弧(MeVVA)技術佈植氣化的鋁離子,使其改質氧化鋅(ZnO)成薄膜。藉由不同的鋁離子植入劑量與控制機台參數,進而改變ZnO薄膜的導電特性與透光度。實驗中使用一般鈉玻璃作為基板,並利用射頻磁控濺鍍(RF-MSD)系統沉積ZnO薄膜與對照組ZnO:Al(2%)薄膜,然後以MeVVA來改質ZnO薄膜。此技術可將前進的鋁離子穿透進入ZnO薄膜至深度數百奈米的表層。比較RF磁控濺鍍與MeVVA離子佈植兩種技術,其中,薄膜厚度、沉積速率、透光率、電性與佈植形貌對ZnO薄膜的特性有顯著的影響。藉由前述的參數選擇最佳調整來改質ZnO薄膜,並以ZnO:Al薄膜作為對照組。研究結果顯示:在基板不加熱以及厚度為261 nm的條件下,沉積出的ZnO薄膜電阻值高,但經由MeVVA離子佈植,在劑量為1.4×1016 ions/cm2時,可以改善ZnO薄膜之電阻值從3.02×107 Ω下降至3.03×104 Ω;並保有高透光率(91.5%,波長為550 nm),極具應用與發展之潛力。

     Transparent conductive thin film is capable to absorb ultraviolet, transmit visible light and reflect infrared. Usually Tin-doped indium oxide (ITO) is primarily used, whereas the cost for the preparation the thin-film ITO is still too high. Novel coating materials or techniques are developing to replace the thin-film ITO such as Al-doped ZnO (AZO). In this study, we utilize metal vapor vacuum arc (MeVVA) technique that forward the vaporized aluminum ions implanted into zinc oxide (ZnO) as a thin solid film. By applying different ion-implanted doses and manipulating the operational parameters, the conductivity and optical property of the ZnO thin film can be improved. In the experiment, a glass substrate was used as the base, then a thin-film ZnO or ZnO:Al (2%, as a reference) was coated using RF reactive magnetron sputtering deposition (RF-MSD) system. The thin-film ZnO was then treated by MEVVA, with which the forward aluminum ions can penetrate the thin-film ZnO into a diffused layer of several hundreds nanometers depth. The film thickness, deposition rate, transparency, conductivity and surface morphology of the treated ZnO surface were significantly influenced by the employment of RF-MSD or MeVVA treatment. From the above-mentioned parameters, an optimized adjustment was chosen, while the RF-MSD-treated ZnO:Al (2%) film was referenced. Experimental result demonstrated that under the condition of non-thermal effect and the deposited ZnO coating of 261 nm, the conductivity of ZnO thin film was originally poor (3.02×107Ω). However after the vaporized aluminum ions implantation, the resistance of the ion-implanted ZnO decreased from 3.02×107 to 3.03×104 Ω. At the same time the transparency of the aluminum ions-implanted ZnO was mostly preserved (91.5% at the wavelength of 550 nm). Potentially it provides a method with highly promising applications.

    目錄 頁次 中文摘要……………………………………………………i 英文摘要………………………………………………… ii 誌謝………………………………………………………iii 目錄………………………………………………………iv 圖索引……………………………………………………vii 表索引……………………………………………………ix 第一章 序論 1-1 前言………………………………………………………………………………1 1-2 研究動機與目的…………………………………………………………………2 1-3 研究架構…………………………………………………………………………3 第二章 理論基礎與文獻回顧 2-1 透明導電膜介紹…………………………………………………………………5 2-1-1 透明導電膜之應用……………………………………………………………6 2-1-2 透明導電膜之製備……………………………………………………………8 2-2 ZnO薄膜與ZnO:Al薄膜之結構與性質………………………………………9 2-2-1 ZnO薄膜與ZnO:Al薄膜之電學性質………………………………………10 2-2-2 ZnO薄膜與ZnO:Al薄膜之光學特性………………………………………11 2-2-3 影響透明性的因素…………………………………………………………12 2-3 濺鍍原理………………………………………………………………………13 2-3-1 磁控濺鍍系統………………………………………………………………14 2-4 薄膜沉積原理…………………………………………………………………16 2-4-1 薄膜表面及截面型態結構…………………………………………………18 2-5 金屬蒸氣真空弧技術…………………………………………………………19 2-5-1 離子佈植之強化機制………………………………………………………20 第三章 材料與方法 3-1 實驗流程………………………………………………………………………23 3-2 實驗材料………………………………………………………………………24 3-3 實驗方法及設備………………………………………………………………25 3-3-1 基板裁製與清洗……………………………………………………………25 3-3-2 濺鍍設備……………………………………………………………………26 3-3-3 金屬蒸氣真空弧離子佈植系統……………………………………………28 3-4 分析儀器………………………………………………………………………30 3-4-1 X光光電子能譜儀……………………………………………………………30 3-4-2 奈米壓痕試驗機……………………………………………………………31 3-4-3 靜態接觸角量測儀…………………………………………………………32 3-4-4 掃描式電子顯微鏡…………………………………………………………33 3-4-5 掃瞄式探針顯微鏡…………………………………………………………34 3-4-6 UV/VIS分光光譜儀…………………………………………………………35 3-4-7 四點探針…………………………………………………………………….35 3-4-8 測厚儀………………………………………………………………………36 第四章 結果與討論 4-1 以射頻磁控濺鍍法沉積薄膜與金屬蒸氣真空弧技術改質之參數研究……37 4-1-1 射頻磁控濺鍍薄膜之沉積速率……………………………………………37 4-1-2 不同轟擊頻率之鋁離子穿透率實驗分析…………………………………39 4-1-3 場效發射(激發)掃描式電子顯微鏡對植入表面分析………………………42 4-1-4 不同植入劑量之鋁離子與改質前後穿透率實驗分析………………………44 4-2 以金屬蒸氣真空弧處理法改質ZnO薄膜與未改質薄膜之性質研究………46 4-2-1 未改質之薄膜光學性質……………………………………………………46 4-2-2 未改質之薄膜電性分析……………………………………………………48 4-2-3 金屬蒸氣真空弧改質薄膜之電性分析……………………………………49 4-2-4 場效發射(激發)掃描式電子顯微鏡之薄膜分析……………………………51 4-3-5 鍵結與組成分析……………………………………………………………53 4-3-6 掃瞄式探針顯微鏡分析……………………………………………………55 4-3-7 水滴接觸角測試分析………………………………………………………56 4-3-8 奈米壓痕試驗之微力學分析………………………………………………57 第五章 結論………………………………………………………………………61 附錄…………………………………………………………………………………63 參考文獻……………………………………………………………………………68

    [1] P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim and M. E. Motamedi, “Integrated Silicon Microbeam PI-FET Accelerometer’’, IEEE Transactions on Electron Devices, Vol. 29, pp. 27, 1982.
    [2] E. S. Kim, R. S. Muller, “Ic-processed piezoelectric microphone”, IEEE Transactions on Electron Devices, Vol. 8, pp. 467, 1987.
    [3] K. M. Lakin, J. S. Wang, “Acoustic bulk wave composite resonators”, Applied Physical Letter, Vol. 38, pp. 125-127, 1981.
    [4] http://www.i-sis.org.uk/trappingLight.php
    [5] M. Miura, “Crystallographic Character of ZnO Thin Films Formed at Low Sputtering Gas Pressure”, Japanese Journal of Applied Physics, Vol. 21, pp. 264, 1982.
    [6] A. Baneriee, D. Wolf, S. Guha, Journal of Applied Physics, Vol.70, pp. 1692, 1991.
    [7] F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, “Dual-ion-beam sputter deposition of ZnO films”, Journal of Applied Physics, Vol. 74, pp. 244, 1993.
    [8] F. S. Mahmood, R. D. Gould, A. K. Hassan, and H. M. Salih, “DC properties of ZnO thin films prepared by RF magnetron sputtering”, Thin Solid Film, Vol. 270, pp. 376-379, 1995.
    [9] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters”, Materials Science in Semiconductor Processing, vol. 2, pp. 247, 1999.
    [10] T. Mitsuyu, S. Ono and K. Wasa, “Structures and SAW properties of RF-sputtered single-crystal films of ZnO on sapphire”, Journal of Applied Physics, vol. 51, pp. 2464–2470, 1980.
    [11] J. Koike, H Tanaka and H. Ieki, “Quasi-Microwave Band Longitudinally Coupled Surface Acoustic Wave Resonator Filters Using ZnOiSapphire Substrate”, Japanese Journal of Applied Physics, Vol. 34, pp. 2678, 1995.
    [12] W. T. Lim, C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates”, Thin Solid Films, Vol. 12, pp. 353, 1999.
    [13] E. J. Mlttemeijer, “Materials science forum”, Trans Tech Publications Ltd, Vol. 166, pp. 431-449, 479-495, 1994.
    [14] G. J. Rudzki, “Surface Finishing System”, American Society for Metal, Vol. 70, pp.161-169, 1983.
    [15] M. Quirk, J. Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, ISBN, 0130815209, pp. 152-176, 475-513, 2001.
    [16] 張俊彥,半導體元件物理與製作技術,高立圖書有限公司,414-507,1999。
    [17] J. R. Rose,工業等離子體工程,科學出版社,128-148,1998。
    [18] 楊明輝,工業材料,第179期,134,2001。
    [19] A. N. H. Al-Ajili, S. C. Bayliss, “A study of the optical electrical and structural properties of reactively sputtered In2Ox and ITOx thin films”, Thin Solid Films, Vol. 305, pp. 116, 1997.
    [20] C. D. Paine, “A study of low temperature crystallization of amorphous thin film indium-tin-oxide”, Journal of Applied Physics, Vol. 85, pp. 8445, 1999.
    [21] M. Jin, D. Zhang, “Preparation and characterization of ITO films on polyimide by reactive evaporation at low temperature”, Applied Surface Science, Vol. 151, pp. 239, 1999.
    [22] C. Terrier, J. P. Chatelon, “Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method”, Journal of Sol-Gel Science Technology, Vol. 10, pp. 75, 1997.
    [23] K. H. Kim, S. W. Lee, “Effect of antimony addition on electric and optical properties of tin oxide films”, Journal of the American Ceramic Society, Vol. 77, pp. 915, 1994.
    [24] A. E. Rakhshani, Y. Makdisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, Journal of Applied Physics, Vol. 83, pp. 1049, 1998.
    [25] WJ communications, “Highly conductively and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films, Vol. 221, pp. 166-182, 1992.
    [26] 王仁宏,李正中,PET塑膠片導電透光膜(ITO)應用、設計及製造,光訊,第80期,5,1999。
    [27] 許國銓,科技玻璃-高性能透明導電膜玻璃,材料與社會,第84期,110,1993。
    [28] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, Vol. 9, pp. 1-64, 1977.
    [29] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, New York, 1995.
    [30] 林昭憲,以電漿化學氣相沉積法蒸鍍氧化鋁薄膜之研究,國立成功大學材料科學及工程研究所碩士論文,4-10,1994。
    [31] H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publishing, 1995.
    [32] E. L. Paradis and A. J. Shuskus, “RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics”, Thin Solid Films, Vol.38, pp.131-141, 1976.
    [33] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, “Low-loss ZnO Optical Waveguides for SAW-AO applications”, IEEE Transactions on Ultrasonics, Vol. 36, pp. 442-445, 1989.
    [34] W. Water and S. Y. Chu, “Physical and Structure Properties of ZnO Sputtered Films”, Materials Letters, Vol. 55, pp. 67-72, 2002.
    [35] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering”, Vacuum, Vol. 59, pp. 538-545, 2000.
    [36] T. Minami, “New N-type Transparent Conducting Oxides”, MRS Bulletin, Vol. 25, pp.38-41, 2000.
    [37] B. E. Sernelius, “Band-gap tailoring of ZnO by means of heavy Al doping”, Physical Review B, Vol. 37, pp. 10244-10248, 1998
    [38] A. Sarkar, “Studies on electron transport properties and Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, Vol. 204, pp. 255-264, 1991.
    [39] D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman and Hall, chap. 9, pp. 180, 1994
    [40] V. Srikant and D. R. Clarke, “Optical Absorption edge of ZnO thin film: The effect of substrate”, J. Appl. Phys., Vol. 81, pp. 6357, 1997.
    [41] J. Venables, “Nucleation and Growth of Thin Films”, Reports on progress in physics, Vol. 47, pp. 399-459, 1984.
    [42] J. A. Thornton, “Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating”, Journal of Vacuum Science and Technology A, Vol. 11, pp. 666, 1974.
    [43] J. A. Thornton, “Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings”, Journal of Vacuum Science and Technology A, Vol. 12, pp. 830, 1975.
    [44] J. F. Ziegler, “Handbook of ion implantation technology”, North Holland, pp. 25-64, 1992.
    [45] R. F. Hochman, “Ion planting and implantation”, American Society for Metal, pp. 115-123, 1985.
    [46] Z. Tonghe, Z. Huixing, J. Changzhoua, “Industrialization of MEVVA source ion implantation”, Surface and Coatings Technology, Vol. 128-129, pp. 1-8, 2000.
    [47] M. Farley, B. Simonton, “Ion Implantation Science and Technology”, Ion Implantation Technology Co., Yorktown, 1996.
    [48] H. L. Liu, S. S. Gearhart, J. H. Booske, “Ultra-Shallow P+/N Junctions Formed by Recoil Implantation”, Journal of Electronic Materials, Vol. 27, pp. 1027, 1998.
    [49] F. Spaepan and D. Turnbull, “Crystalline Process”, In Laser Annealing of Semicodncutors, Academic Press, New York, Chap. 2, 1982.
    [50] K. B. Winterbon, “Ion Implantation Range and Energy Deposition Distributions Low Energies”, Plenum Press, New York, 1975.

    下載圖示 校內:2016-01-19公開
    校外:2016-01-19公開
    QR CODE