簡易檢索 / 詳目顯示

研究生: 彭子蔚
Peng, Zih-Wei
論文名稱: 對染料敏化太陽能電池內具三苯胺染料分子及其衍生物進行理論計算研究
Theoretical Studies of TPA-Based Dyes and It’s Derivatives for Dye Sensitizer Solar Cells
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 染料敏化太陽能電池
外文關鍵詞: organic dye-sensitized solar cells (DSSCs)
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從M.Grätzel於1991年發表第一個染料敏化太陽能電池以來,全世界都掀起一股染敏太陽能電池熱,大家不斷開發出新型的染料且致力於改善電池的效率和使用壽命。具三苯胺結構的有機染料分子近年來在染料敏化太能電池上展現出其發展性,是因為它的電子予體-鍵橋-錨接體 (D-B-A) 結構,利於分子在吸收太陽光後,產生分子內電子轉移,能夠有效地把光能轉換成電能,具有較大的莫耳消光係數,且染料結構可修飾度高,低成本,研究至今也有不錯的效率產生。具三苯胺結構染料分子本身為純有機分子,不含重金屬中心原子,所以對環境較不會造成汙染。在本篇論文中,我們利用理論計算軟體提供了染料分子詳盡的資訊,如基底態的最佳化結構、電子躍遷至激發態所需要的能量、氧化電位等。主要是利用高斯98計算軟體中的密度泛函理論來計算分子軌域;含時密度泛函理論,計算染料的分子內電荷轉移(從最高佔有分子軌域到最低為佔有分子軌域),電子所分布的狀況。並且解釋染料分子的結構和光電化學以及染料敏化太陽能電池能之間的關係。我們從TPA分子做為起點藉由修飾不同種類的錨接基、在染料分子的電子予體和受體之間增加共軛鍊及在三苯胺電子予體和橋接部分的苯環上面用不同的官能基取代,來改善其電子注射效率和光捕捉效率。從這些修飾的染料分子的構型分析結果,我們可以得知,在錨接基與連結共軛鍊部分的共平面性一旦被壞,染料分子在電子受激發後所產生的正電荷,也就是電洞就不會直接和二氧化鈦的導帶表面接觸,如此一來就能成功地阻止電子和電動的再結合,進而改善具三苯胺染料分子的電子注射效率,及染料敏化太陽能電池的功率。

    A series of triphenylamine (TPA) dyes were designed and synthesized as photosensitizers in order to approach optimal energy level composition in the TiO2-dye-I-/I3- system in the organic dye-sensitized solar cells (DSSCs).HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphrnylamine donor and the acceptors, changed the anchoring group or modified the functional group on the rings of donor part or linkage part. Detailed investigation on the ground state geometries, electronic transition energies, oxidation potentials, relationship between the dye structure, photoelectrochemical properties and performance of DSSCs is described here. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) with the 6-31G (d) basis set has employed to study the molecular orbital and the electron distribution and the intramolecular charge transfer (HOMO→LUMO) of the dyes.In particular, we propose ways to improve the electron injection process. On this purpose, we considered a large set of dye molecules (about 20 new dyes with a terminal –SOOH group on the acceptor unit to link the dye to the semiconductor surface), and starting from the TC-1 structure, the modifications make better electron injection and increase the efficiency of the DSSCs. The molecular topology analysis shows that the coplanarity between the anchoring and bridging part is broken, the positive charge is not directly in contact with the TiO2 surface, and the electron/hole recombination reaction is therefore inhibited.

    中文摘要 I 英文摘要 (Abstract) II 目錄 III 表目錄 VIII 圖目錄 X 第一章 序論 1 1-1 太陽能電池(Solar Cells) 1 1-1.1 第一代太陽能電池(The First Generation Solar Cells) 3 1-1.2 第二代太陽能電池(The Second Generation Solar Cells) 3 1-1.3第三代太陽能電池(The Third Generation Solar Cells) 4 1-1.4第四代太陽能電池(The Fourth Generation Solar Cells) 5 1-2 染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSCs) 5 1-2.1染料敏化太陽能電池的優點(The Advantages of DSSCs) 6 1-2.2染料敏化太陽能電池的構造(The Structure of DSSCs) 7 1-2.3染料敏化太陽能電池的工作原理(The Operation Principle of DSSCs.) 7 1-2.4染料敏化太陽能電池的設計條件(10)(The General Design of DSSCs.) 8 1-2.5染料敏化太陽能電池裡的電子傳遞循環(11)(The electron transport cycle in DSSCs) 9 1-2.6 如何防止電子在結合的發生(How to Prevent the Occurrence of Electron/Hole Recombination.) 11 1-2.7染料敏化太陽能電池效能的參數(The Parameters of the DSSCs’ Performance) 11 1-3 染料分子和金屬氧化物的特性(The Characters of The Dyes and The Metal Oxides.) 13 1-3.1金屬氧化物/染料分子交界面(Dye/metal oxide interface) 13 1-3.2染料分子對電子注入的影響(Influence of dyes on electron injection) 15 1-3.3解釋染料結構修飾後所造成的現象(Explanations of the phenomena Caused by structural modifications) 17 1-3.4染料分子堆積造成的影響(Effect of dye aggregation) 18 1-3.5金屬氧化物在金屬氧化物/染料分子交界面的效能中所扮演角色 (Role of metal oxide on the performance of metal oxide/dye interface) 19 1-3.6金屬氧化物的電子結構所造成影響(Effect of electronic structure of metal oxides) 20 1-3.7觀察電子轉移過程的方法(How to Observe The Charge – Transfer Processes) 22 1-4具三苯胺染料分子( Triphenylamine-Based Dyes) 23 1-4.1具三苯胺染料分子特性(Characteristics of Triphenylamine-Based Dyes) 23 1-4.2具三苯胺染料分子的模擬(The Simulation of Triphenylamine-Based Dyes) 24 第二章 實驗方法 25 2-1預測染料分子在激發態的電化學性質(The Evaluation of The Electrochemical Properties of The Dyes In Their Excited State). 25 2-1.1電子注入的自由能差(The free energy change for the electron injection) 26 2-1.2染料的激發態氧化電位(The oxidation potential of the dye in the excited state) 26 2-1.3半導體傳導帶的還原電位(The reduction potential of the semiconductors conduction band) 27 2-1.4基底態到第一激發態的垂直躍遷能量(The energy difference between the ground state and the first relaxed exicted state) 27 2-1.5電子注入的反應路徑(The reaction path of electron injection) 28 2-2化學結構修飾所造成的影響(Effects of Chemical Modifications) 29 2-2.1染料結構修飾的準則(Criteria of Dyes Modification) 30 2-2.2光敏染料今後研究的重點(The Focus on The Future Reasearch of DSSCs ) 31 第三章 計算原理及方法 31 3-1計算原理(The Principle of The Calculation Methods) 31 3-1.1基底集合(Basis Set) 31 3-1.2密度泛函理論(Density Functional Theory) 33 3-1.3天然鍵結軌域(Natural Bond Orbital, NBO) 36 3-2計算方法(Calculation Method) 38 3-2.1量子化學計算選用方法 38 3-2.2量子化學選用基底 38 3-3計算軟體 39 3-3.1 Gaussian98 39 3-3.2 GaussView 39 3-3.3計算指令 40 第四章 結果與討論 41 4-1 TC-1染料分子 41 4-2 更換含硫氧原子錨接基的染料分子 43 4-3更換含硫氧原子錨接基的染料分子(二) 45 4-4 染料分子TPS-1和TC-8的比較 46 4-5染料分子TPS-1的延伸修飾與比較(TPS-1 vs. TPS-2) 48 4-6染料分子TPS-1的延伸修飾與比較(二)(TPS-2 vs. TPS-4) 50 4-7染料分子TPS-1的延伸修飾與比較(三) 51 4-8染料分子TPS-1的延伸修飾與比較(四) 52 4-9染料分子TPS-1的延伸修飾與比較(五) 55 第五章 結論 57 第六章 未來展望 59 參考文獻 111

    1. "Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present". Retrieved 2005-10-05.
    2. Peter Würfel (2005). The Physics of Solar Cells. Weinheim: Wiley-VCH. ISBN 3527408576
    3. EnSol - Energy Solutions (http://www.ensol.no/r&d2.htm)
    4. O’Regan, B.; Grätzel, M. Nature, 1991, 353, 737-740.
    5. Wang, Z. S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B, 2005, 109 (9), 3907–3914.
    6. Bianchi, L.; Kwok, S. M.; Driscoll, M.; Sesti, F. J. Biol. Chem., 2003, 278, 12415.
    7. Sakuragia, Y.; Wang, X. F.; Miurab, H.; Matsuia, M.; Yoshida, T. J. Photochem. Photobiol. A, 2010, 216, 1, 1-7.
    8. Alex, S.; Santhosh, U.; Das, S. J. Photochem. Photobiol. A: Chem, 2005, 172, 1, 63-71.
    9. Würthner, F.; Kaiser, T. E.; Saha‐Möller, C. R. Angew. Chem. Int. Ed., 2011, 50, 3376–3410.
    10. Thavasi, V et al./Materials Science and Enginnering R 63, 2009, 81-99.
    11. Snaith, H. J.; Schmidt-Mende, L.; Adv. Mater. 2007,19, 3187-3220.
    12. Green, A. N. M.; Palomares, E.; Haque, S.; Kroon, J. M.; Durrant, J.R.; J. Phys. Chem. B., 2005, 109, 12525-12533.
    13. Gregg, B. A. M.; Hanna, C.; J. Appl. Phys. 2003, 93, 3605-3614.
    14. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater., 2001, 374–380.
    15. Crabtree, G. W.; Lewis, N. S.; Phys. Today, 2007, 60, 37–42.
    16. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.;
    Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G .B.; Bignozzi, C. A.; and M. Graetzel, J. Am. Chem. Soc., 2001, 123, 1613–1624.
    17. Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E.; J. Am. Chem. Soc., 2007,
    129, 4655–4665.
    18. Jose, A.; Kumar, V.; Thavasi, K.; Fujihara, S.; Uchida, S.; Ramakrishna, S.; Appl. Phys. Lett. 2008, 93, 13101–13103.
    19. Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S.; J. Phys. Chem. B, 2004, 108, 14093–14101.
    20. Nilsing, M.; Persson, P.; Ojamaee, L.; Chem. Phys. Lett., 2005, 415, 375–380.
    21. Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Graetzel, M.; J. Phys. Chem. B, 2000, 104, 1300–1306.
    22. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Graetzel, M.; J. Phys. Chem. B, 2003, 107, 8981–8987.
    23. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; J. Phys. Chem. B, 2002, 106, 12693–12704.
    24. Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S.; J. Electroanal. Chem., 1995, 396, 27–34.
    25. Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L.; Chem. Mater. 2007, 19, 4007-4015.
    26. Liu, D.; Fessenden, R. W.; Hug, G. L.; Kamat, P. V.; J. Phys. Chem. B, 1997, 101(14), 2583-2590.
    27. Shklover, V.; Ovchinnikov, Y. E.; Braginsky, L. S.; Zakeeruddin, S. M.;
    Grätzel, M.; Chem. Mater. 1998, 10, 2533-2541.
    28. Wenger, B.; Gratzel, M.; Moser Jacques, E.; J. Am. Chem. Soc. 2005, 127 12150–12151.
    29. Shklover, V.; Vchinnikov, Y. E.; Braginsky, L. S.. Zakeeruddin, S. M.; Graetzel, M.; Chem. Mater., 1998, 10, 2533–2541.
    30. Asbury, J.B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T.; J. Phys. Chem. B 2001, 105, 4545–4557.
    31. Iwai, S.; Hara, K.; Murata, S.; Katoh, R.; Sugihara, H.; Arakawa, H. J.;Chem. Phys., 2000, 113, 3366–3373.
    32. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; Int. J. Photoenergy, 2002, 4, 17–20.
    33. Benko, G.; Myllyperkio, P.; Pan, J.; Yartsev Arkady, P.; Sundstrom, V.; J. Am. Chem. Soc.; 2003, 125, 1118–1119.
    34. Kakiuchi, K.; Hosono, E.; Fujihara, S.; J. Photochem. Photobiol. A: Chem. 2006, 179, 81–86.
    35. Ai, X.; Guo, J.; Anderson N. A.; Lian, T.; J. Phys. Chem. B, 2004, 108, 12795–12803.
    36. Tributsch, H.; Coord; Chem. Rev. 2004, 248 ,1511–1530.
    37. Tributsch, H.; Appl. Phys. A: Mater. Sci. Process; 2001, 73, 305–316.
    38. Zimmermann, C.; et al.; J. Phys. Chem. 2001, 105(38), 9245-9253.
    39. 梁國淦, 染料敏化太陽能電池中之超快光致電子轉移過程, 2006.
    40. Guillaume, M.; Champagne, B.; Zutterman, F. J. Phys. Chem. A 2006, 110, 13007.
    41. Bertolino, C. A.; Ferrari, A. M.; Barolo, C.; Viscardi, G.; Caputo, S.; Coluccia, G. Chem. Phys. 2006, 52, 330.
    42. Prieto, J. B.; Arbeloa, F. L.; Martinez, V. M.; Arbeloa, I. L. Chem. Phys. 2003, 13, 296.
    43. Jacquemin, D.; Perpe`te, E. A.; Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C. J. Chem. Phys. 2007, 126, 144105.
    44. Amovilli, C.; Barone, V.; Cammi, R.; Cance`s, E.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi, J. AdV. Quantum Chem. 1998, 32, 227.
    45. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. ReV. 2005, 105, 2999.
    46. Nalwa, H. S. Handbook of AdVanced Electronic and Photonic Materials and DeVices; Academic: San Diego, 2001.
    47. Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H.; J. Org. Chem 2008, 73, 3791-3797.
    48. She, C.; Guo, J.; Irle, S.; Lian, T.; J. Phys. Chem. A 2007, 111,6832-6842.
    49. Preat, J.; Michaux, C.; Jacquemin, D.; Perpete, E. A.;J. Phys. Chem. C 2009, 113, 38.
    50. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818.
    51. Asbury, J. B.; Wang, Y. Q.; Hao, E.; Ghosh, H.; Lian, T. Res. Chem. Intermed. 2001, 27, 393.
    52. Hagfeldt, A.; Grätzel M.; Chem. Rev. 1995, 95, 49.
    53. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818.
    54. Cave, R. J.; Castner, E. W., Jr.; J. Phys. Chem. A, 2002, 106, 12117.
    55. Cave, R. J.; Burke, K.; Castner, E. W., Jr.; J. Phys. Chem. A, 2002, 106, 9294.
    56. Barbara, P. F.; Meyer, T. J.; Ratner, M. A.; J. Phys. Chem., 1996, 100, 13148.
    57. Benko, G.; Kallioien, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.; Sundstrom, V. J. Am. Chem. Soc.; 2002, 124, 489.
    58. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M.; J. Phys. Chem. B 2004, 108, 4818.
    59. Michaux, C.; Jaxquemin, D.; Perpete, E. A.; J. Phys. Chem. C, 2009, 113
    (38), 16821–16833.
    60. Matthews D.; et al.; Solar Energy Materials and Solar Cells, 1996, 44(131), 119-155.
    61. Cahen, D.; Hodes, G.; Graetzel, M.; Riess, I.; J. Phys. Chem. B, 2000, 104, 2053-2059.
    62. M. J. Frisch, et al., Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998).
    63. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission KS, 2009.
    64. Angelis, F. D.; Fantacci, S., Selloni, A.; Nanotechology 2008, 19, 424022-29
    65. Peng, B.; Yang, S.; Li, L.; Cheng, F.; Chen, J.; The Journal of Chemical Physics; 2010, 132, 034305

    下載圖示 校內:2017-02-09公開
    校外:2017-02-09公開
    QR CODE