簡易檢索 / 詳目顯示

研究生: 曹以明
Tsao, Yi-Ming
論文名稱: 受工件撓度影響之再生顫振穩定性分析
A Stability Analysis of Regenerative Chatter in Turning Process with Effect of Deflection of Workpiece
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 186
中文關鍵詞: 車削過程撓度穩定性分析再生顫振
外文關鍵詞: Regenerative Chatter, Stability Analysis, Deflection, Turning Process
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文考慮工件為彈性體,受刀具壓迫後,產生形變。將工件視為尤拉柏努利樑,使用二階偏微分方程式模擬工件側向強制振動,並用二階常微分方程式模擬刀具振動,再由工件與刀具之相互作用力將兩式結合。在切削力計算上,忽略刀腹之力,採用薄剪面切削模式及正交切削,令切削力與切削深度及寬度成正比。在顫振機制上,考慮其為自激性振動中之再生性顫振。對兩動態方程式取拉普拉斯轉換後,求系統特徵方程式,並用頻域響應分析及奈氏圖作穩定性分析,可得到各種材質、尺寸工件在不同轉速下之臨界切屑寬度方程式。

      在加工方式上,考慮切斷加工,分別討論使用頂心與不使用頂心兩種加工方法;在切削力分析上,分別討論不考慮前一圈撓度與考慮前一圈撓度兩種方法。

      在模擬過程中,無論是否使用頂心或是否考慮前一圈撓度,均有以下結果:
    1.當撓度越大時,則臨界切屑寬度越大。
    2.當自然共振頻率越大時,則臨界切屑寬度越小。
    3.青銅之臨界切屑寬度大於鋼材之臨界切屑寬度。

      在交叉比對中,使用頂心工件之臨界切屑寬度均小於不使用頂心工件之臨界切屑寬度;考慮前一圈撓度例子之臨界切屑寬度均大於不考慮前一圈撓度例子之臨界切屑寬度。

     In this study, the workpiece was assumed to be elastic and deformable under external force generated from the cutting tool. By considering the workpiece under investigation as an Euler-Bernoulli beam, then a second order partial differential equation was established to simulate the lateral forced vibration. Additionally, a model for the cutting tool vibration is also developed in a second order ordinary differential equation formulation. These developed models permitted the full analysis and discussion of the interaction between the workpiece and the tool. For the calculation of cutting force, the modes of “shear surface was a plane” and of orthogonal cutting were utilized. For the chatter mechanism, considering the regenerative chatter of the self-excited vibration, system characteristic equation could be yielded from the Laplace transform of the dynamic equations. The stability analyses by frequency domain responses and Nyquist charts could imply the governing equations of critical chip width for different materials, sizes and spindle speeds.

     In the machining process, considering the slot cutting, two cases of with or without the tailstock were both discussed. In the cutting force analysis, two cases of with or without the previous cycle deflection were also be discussed.

     In the simulation, the differences of the critical chip widths were studied under different conditions. It was found that, no matter using the tailstock or not; and no matter considering the previous cycle deflection or not, the following conclusions were always obtained.
    1.The greater the deflection and the bigger the critical chip width.
    2.The smaller the natural frequency and the larger the critical chip width.
    3.The critical chip width of bronze is greater than the steel.

     Besides the above results, it was also found that the critical chip width when using the tailstock was always smaller than the case without using the tailstock. Also, the critical chip width with the previous cycle deflection was always greater than the without case.

    中文摘要I 英文摘要II 致謝IV 目錄V 表目錄IX 圖目錄X 符號說明XIX 第一章簡介1 1-1研究目的及背景1 1-2文獻回顧2 1-2-1顫振機制與模型之研究3 1-2-2系統動態特性之研究5 1-2-3顫振預防與控制之研究8 1-2-4顫振之線上監視與控制11 1.3研究方法12 1-4論文架構13 第二章切削基本原理14 2-1正交切削與斜交切削14 2-1-1正交切削14 2-1-2斜交切削15 2-2切削力模型17 2-2-1刀頂面之摩擦力18 2-2-2剪切面之假設19 2-2-3切削力分析21 2-3動態切削過程及顫振機制24 2-3-1強迫振動25 2-3-2自激性振動26 第三章切削系統建模36 3-1刀具系統分析36 3-2工件系統分析37 3-2-1工件之側向振動分析37 3-2-2工件側向振動之自由振動分析39 3-2-3工件側向振動之強制振動分析50 第四章穩定性分析59 4-1考慮工件為剛體之臨界切削寬度計算60 4-2考慮工件有撓度之臨界切削寬度計算62 4-2-1不使用頂心加工之臨界切削寬度計算62 4-2-2使用頂心加工之臨界切削寬度計算70 4-3考慮工件有撓度之穩定性分析76 4-3-1不使用頂心加工之穩定性分析76 4-3-2使用頂心加工之穩定性分析81 4-3-3交叉比對之穩定性分析86 第五章結果與討論92 5-1不使用頂心加工方式92 5-1-1不考慮前一圈切削撓度之方法92 5-1-2考慮前一圈切削撓度之方法96 5-2使用頂心加工方式100 5-2-1不考慮前一圈切削撓度之方法100 5-2-2考慮前一圈切削撓度之方法104 5-3交叉比對108 第六章結論與建議172 6-1結論172 6-2未來研究方向之建議174 參考文獻176 自述185 歷年發表著作186

    Al-Regib, E., Ni, J., Lee, S.H., “Programming spindle speed variation for machine tool chatter suppression,” International Journal of Machine Tools & Manufacture, 43(12), pp.1229-1240, 2003.
    Ahn, T.Y., Eman, K.F., Wu, S.M., “Cutting Dynamics Identification by Dynamic Data System (DDS) Modelling Approach,” Trans. ASME, B, 107(2), pp.91-95, 1985.
    Arnold, R.N., “The Mechanism of Tool Vibration in Cutting of Steel,” Proc. I. Mech. E., 154, pp.261-284, 1946.
    Berger, F. K., Tlusty , J., Structure of Machine Tools, Pergamon Press, Oxford, 1971.
    Branko, H., “Graphic Interpretation of Tool Maine Self-Excited Vibrations,” Strojarstvo, 30(1), pp.25-28, 1988.
    Burney, F.A., Pandit, S.M., Wu, S.M., “A Stochastic Approach to Characterization of Machine Tool System Dynamics under Actral Working Conditions,” Trans. ASME, B, 98(2), pp.614-619, 1976.
    Burney, F.A., Pandit, S.M., Wu, S.M., “A New Approach to The Analysis of Machine-Tool System Stability under Working Condition,” Trans. ASME, 97, pp.585-592, 1977.
    Deshpande, N., Fofana, M.S., “Nonlinear regenerative chatter in turning,” Robotics and Computer Integrated Manufacturing, 17(1-2), pp.107-112, 2001.
    Dohner, J.L., Lauffer, J.P., Hinnerichs,T.D., Shankar, N., Regelbrugge, M., Kwan, C.M., Xu, R., Winterbauer, B., Bridger, K., “Mitigation of chatter instabilities in milling by active structural control,” Journal of Sound and Vibration, 269(1-2), pp.197-211, 2004.
    Doi, M., Masuko, M. et al., “A Study on Parametric Vibration in Chuck Work,” Bull. JSME, 28(245), pp.2772-2781, 1985.
    Eman, K.F., Wu, S.M., “A Feasibility Study of On-Line Identification of Chatter in Turning Operations,” Trans. ASME, B, 102, pp.315-321, 1980.
    Ema, S., Marui, E., “Theoretical analysis on chatter vibration in drilling and its suppression,” Journal of Materials Processing Technology, 138(1-3), pp.572-578, 2003.
    Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H., “Prediction of regenerative chatter by modeling and analysis of high-speed milling,” International Journal of Machine Tools & Manufacture, 43(14), pp.1437-1446, 2003.
    Fassois, S.D., Eman, K.F., Wu, S.M., “A Fast Algorithm for On-Line Machining Process Modeling and Adaptive Control,” Trans. ASME, B, 111, pp.133-139, 1989.
    Finnie, I., Shaw, M.C., “The friction Process in Metal Cutting,” Trans. ASME, 78, pp.1649-1657, 1956.
    Fofana, M.S., “Delay dynamical systems and applications to nonlinear machine-tool chatter,” Chaos, Solitons and Fractals, 17(4), pp.731-747, 2003.
    Fofana, M.S., Ryba, P.B., “Parametric stability of non-linear time delay equations,” International Journal of Non-Linear Mechanics, 39(1), pp.79-91, 2004.
    Gurney, J.p., “Analysis of Two Degree of Freedom Instability in Machine Tool,” J. Mech. Eng. Sci., Vol.4, No.1, pp.53-62, 1962a.
    Gurney, J.P., and Tobias, S.A., “A Graphical Analysis of Regenerative Machine Tool Instability,” Trans. ASME, 84, pp.103-112, 1962b.
    Hahn, R.S., “On the Theory of Regenerative Chatter in Precision Grinding Operations,” Trans. ASME, B, 76(1), pp.593-597, 1954.
    Hanna, N.H., Tobias, S.A., “A Theory of Nonlinear Regenerative Chatter,” Trans. ASME, B, pp.247-255, 1974.
    Herbert, S., Wagner, H.D., “Reserve Clamping Capacity of Chuck Jaws when Turing at High Speed,” Werkstatt Betr., 118(6), pp.339-342, 1985.
    Hessal, N., “Self-Excited Vibration in Two-Dimensional Cutting Process,” Period Polytech Mech. Eng., 30(2), pp.207-219, 1986.
    Hook, C.J., Tobias, S.A., “Finite Amplitude Instability - a New Type of Chatter,” Proc. 4th MTDR, pp.97-109, 1963.
    Inamura, T., Senda, T., Sata, T., “Computer Control Chattering in Turning Operation,” Anna. CIRP, 25(1), pp.181-186, 1977.
    Kato, H., Yamaguchi, K., Yamada, M., “Stress Distribution at the Interface Between Tool and Chip in Machining,” Trans. ASME, J. Eng. Ind., pp.683-689, 1972.
    Kim, T.R., Wu, S.M., Eman, K.F., “Identification of Joint Parameters for a Taiper Joint,” Trans. ASME, B, 111(3), pp.283-287, 1989.
    King , R.I., Handbook of High Speed Machining Technology, Chapman and Hall, New York, 1985.
    Koenigsberger, F., Tlusty, J., et al., Machine Tool Structures, Pergamon Press, 1970.
    Litak, G., “Chaotic vibrations in a regenerative cutting process,” Chaos, Solitons and Fractals, 13 (7), pp.1531-1535, 2002.
    Lu, B.H., Lin, Z.H. Huang, X.T. Ku, C.H. Tobias, S.A., “On-Line Identification of Dynamic Behavior of Machine Tool Structures During Stable Cutting,” Anna. CIRP, 32(1), pp.315-318, 1983.
    Marui, E., et al., “Chatter Vibration of Lathe Tools,” Trans. ASME, B, 105, pp.107-133, 1983.
    Meirovitch, L., Analytical Methods in Vibrations, Macmillan, New York, 1967.
    Merchant, M.E., “Mechanics of Metal Cutting Process.I. Orthognal Cutting and a Type 2 Chip,” J. Applied Physics, 16(5), pp.267-275, 1945a.
    Merchant, M.E., “Mechanics of Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting,” J. Applied Physics, 16(5), pp.318-327, 1945b.
    Moon, F.C., Dynamics and chaos in Manufacturing Processes, John Wiley & Sons, 1998.
    Olgac, N., Hosek, M., “A new perspective and analysis for regeneration machine tool chatter,” International Journal of Machine Tools & Manufacture, 38 (7), pp.783-798, 1998.
    Palmer, W.B., Oxley, P.L.B., “Mechanics of Orthogonal Machining,” Proc. Inst. Mech. Engrs., 173, pp.623-632, 1959.
    Pandit, S.M., Subramanian, T.L., Wu, S.M., “Modeling Machine Tool Chatter by Time Series,” Trans. ASME, B, 95, pp.211-215, 1975a.
    Pandit, S.M., Subramanian, T.L., Wu, S.M., “Stability of Random Vibtation with Special Reference to Machime Tool Chatter,” Trans. ASME, B, 95, pp.216-219, 1975b.
    Puety, R.D., Eichhorn, R., “Expert Systems for Fault Diagnosis on CNC Machine,” Conf. on KBES for Eng. Classification, Education and Control, 1987.
    Rahman, M., “In-Process Detection of Chatter Threshold,” Trans. ASME, B, 110, pp.44-50, 1988.
    Rao, S.S., Mechanical Vibrations, Wesley, Mass, 1985.
    Salje, E., “Self-Excited Vibrations of Systems with Two Degrees of Freedom,” Trans. ASME, B, 78, pp.737-745, 1956.
    Sexton, J.S., Stone, B.J., “A Method of Reducing Chatter in Roll Grinding,” ICME Conf., Melbourne, 1980.
    Sharan, A.M., Sankar, S., Sankar, T.S., “Dynamic Analysis and Optimal Selection of Parameters of A Finite Element Modeled Lathe Spindle under Random Cutting Forces,” J. Vib. Acoust Stress Reliab Des., 105(2), pp.467-475, 1983.
    Shaw, M. C., Metal Cutting Principles, Oxford University Press, New York, 1984.
    Shi, H.M., Tobias, S.A., “Theory of Finite Amplitude Machine Tool Instability,” Int. J. MTDR, 24(1), pp.45-69, 1984.
    Shin, Y.C., Eman, K.F., Wu, S.M., “Experimental Complex Modal Analysis of Machine Tool Structure,” Trans. ASME, B, 111, pp.117-122, 1989.
    Shinobu, K., Etsuo, M., Masatoshi, H., Yamada, T., “Characteristice of Chatter Vibration of Lathe Tools,” Mem. Fac. Eng, Nagoya, 38(2), pp.208-215, 1986.
    Slavicek, J., Bollinger, J.G., “Design and Application of A Self Optimizing Damper for Increasing Machine Tool Performance,” Proc.9th MTDR, pp.71-80, 1969.
    Stewart, V.A., Brown, R.H., “The Interrelationship of Shear and Friction Processes in Machining Under Regenerative Chatter Conditions,” Proc.13th Int. Mach.Tool Des. Res. Conf., pp.13-22, 1972.
    Subramanian, T.L., DeVries, M.F., Wu, S.M., “An Investigation of Computer Control of Maching Chatter,” Trans. ASME, B, 98(4), pp.1209-1214, 1976.
    Sugishita, H., Nishiyama, H., et al., “Development of Concrete Machine Center and Identification of the Dynamic and the Thermal Structural Behavior,” Anna, CIRP, 37(1), pp.377-380, 1988.
    Tarng, Y.S., Kao, J.Y., Lee, E.C., “Chatter Suppression in Turning Operations with a Tuned Vibration Absorber,” Journal of Materials Processing Technology, 105(1-2), pp.55-60, 2000.
    Thompson, J.M.T., Bishop, S.R., Nonlinearity and Chaos in Engineering Dynamics, John Wiley & Sons, Chichester, 1994.
    Tlusty, J., Spacek, L., Self-Excited Vibrations in Machine Tools, Czech. Nakladateistvi CSAV Prague, 1954.
    Tlusty, J., and Polacek, M., “The Stability of the Machine Tool Against Self-Excited Vibration in Machining,” Proceedings International Research in Production Engineering, Pittsburgh, Pa., Trans. ASME, pp.465-473, 1963.
    Tlusty, J., “New Tailstock Design Improves Stability of Centre Lathe,” Int. J. MTDR, 5, pp161-176, 1966.
    Tlusty, J., Ismail,F., “Basic Non-Linearity in Machining Chatter,” Anna. CIRP, 30(1), pp.299-304, 1981.
    Tlusty, J., Livingston IV, R., Teng, Y.B., “Nonlinearities in Spindle Bearing and Their Effects,” Anna. CIRP, 37(1), pp.269-273, 1988.
    Tobias, S.A., Fishwick, W., “The Chatter of Lathe Tools Under Othogonal Cutting conditions,” Trans. ASME, 80, pp.1079-1088, 1958.
    Tobias, S. A., Machine Tool Vibration, Wiley, New York, 1961.
    Ugural, A.C., Mechaninics of Materials, McGraw-Hill, New York, 1991.
    Usui, E., Takayama, H., “A Photoelastic Analysis of Machining Stresses,” Trans. ASME, B, J. Eng. Ind., 82, pp.303-311, 1960.
    Vasilyuk, G.D., “Vibration During in Turning,” Sov. Eng. Res., 5(12), pp.73-74, 1985.
    Wang, J.J., Liang, S.Y., Book, W.J., “Convolution Analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, 116, pp.17-25, 1994.
    Wang, J.J., Zeng, C.M., “Identification of Shearing and Ploughing Cutting Constant from Average Forces in Ball-End Milling,” International Journal of Machine Tools & Manufacture, 42, pp.695-705, 2002a.
    Wang, J.J., Zeng, C.M., “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” International Journal of Machine Tools & Manufacture, 42, pp.761-771, 2002b.
    Weck, M., Alldieck, J., “The Originating Mechanisms of Wheel Regenerative Grinding Vibration,” Anna. CIRP, 38(1), pp.381-384, 1987.
    Welbourn, D.B., Smith, J.D., Machine Tool Dynamics-an Introduction, Cambridge University Press, London, 1970.
    Yang, X.G., Eman, K.F., Wu, S.M., “Analysis of Three-Dimensional Cutting Process Dynamics,” Trans. ASME, B, 107(4), pp.336-342, 1985.
    Yang, F., Zhang, B., Yu, J., “Chatter suppression with multiple time-varying parameters in turning,” Journal of Materials Processing Technology, 141(3), pp.431-438, 2003.
    Zorev, N.N., “Interrelationship Between Shear Processes Occurring Along Tool Face and on Shear Plane in Metal Cutting,” Int. Res. in Prod. Engry, pp.42-50, 1963.
    Zorev, N.N., Metal Cutting Mechanics, Pergamon Press, 1966.
    吳雅,機床切削系統的顫振及其控制,科學出版社,1993。
    林振森,切削非線性動態模式之研究,博士論文,國立成功大學機械工程研究所,1991。
    林盛勇,車削顫振之研究,碩士論文,國立成功大學機械工程研究所,1985。
    星鐵太郎,机械加工的振動解析,工業調查會,1990。

    下載圖示 校內:2006-07-05公開
    校外:2006-07-05公開
    QR CODE