研究生: |
柯紫薇 Ke, Zavia |
---|---|
論文名稱: |
堅果類食品企業網路文本評論信息的挖掘與分析 The analysis of online text review information of nut food enterprises |
指導教授: |
溫敏杰
Wen, Miin-Jye |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 統計學系 Department of Statistics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 消費者滿意度 、休閒類食品線上評論 、自然語言處理 、情感分析 、隨機森林 |
外文關鍵詞: | consumer satisfaction, online review of leisure food, natural language processing, emotional analysis, random forest |
相關次數: | 點閱:261 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代互聯網的高速發展使得企業經營模式與互聯網的結合越來越緊密,各行各業都把目光投向了電子商務市場,其中也包括休閒食品行業。休閒食品類企業在電商市場上要想獲得更多的市場份額,它必須要關注其消費者滿意度,因此有必要研究哪些因素會影響到電商市場上消費者的滿意度。本研究使用爬蟲技術獲取電商網站上休閒食品類的在線評論,並引入機器學習與自然語言處理方法,挖掘某電商平臺上休閒類食品的消費者滿意度的主要影響因素,探究各因素與消費者滿意度間的直觀聯繫,為休閒類食品企業提供進一步改善其商品和服務的準確方向。
本研究對某電商平臺休閒類食品的線上評論進行實證研究,對獲取數據的評分進行進一步識別,獲得好評,差評和中評三類。首先本研究將希望從評論中獲取的資訊分為服務、物流、包裝、價格、品質、份量、味道七個維度,利用自然語言處理的相關方法獲得各個維度的分數;最後利用隨機森林方法對影響消費者滿意度的這七個維度進行重要程度的排序。
With the rapid development of e-commerce, enterprises in all walks of life are increasingly focusing on the Internet. In order to obtain more market share in the e-commerce market, leisure food enterprises must pay attention to their consumer satisfaction. Therefore, it is necessary to study which factors will affect the consumer satisfaction in the e-commerce market. This study uses crawler technology to obtain online reviews of leisure food on e-commerce websites, and introduces machine learning and natural language processing methods to mine the main influencing factors of consumer satisfaction of leisure food on an e-commerce platform, and explores the intuitive relationship between each factor and consumer satisfaction, so as to provide the accurate direction for leisure food enterprises to further improve their goods and services.
In this study, the online reviews of leisure food on an e-commerce platform were empirically studied, and the scores of the data obtained were further identified to obtain favorable, poor and medium ratings. First of all, this study divides the information that we hope to get from the reviews into seven dimensions: service, logistics, packaging, price, quality, quantity and taste. Then this study use the methods of natural language processing to get scores of each dimension.Finally, use the random forest model to rank the seven dimensions that affect the degree of importance of consumer satisfaction.
鄭敏,鄭錦榮,李敏濤,張莉,et al.中國電子商務報告2018.中國商務出版社.中國:北京.1-2,2018.
上海艾瑞市場諮詢有限公司.2019年中國休閒食品電商行業研究與發展報告 ,http://www.iresearch.cn,2019.
Duan W, Gu B, Whinston A B. Do Online Reviews Matter? – An Empirical Investigation of Panel Data[J]. Decision Support Systems, 45(4): 1007-1016,2008.
Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales: Online Book Reviews[J]. Journal of Marketing Research, 43(3): 345-354,2004.
Gao Baojun, Sun Hanlin, Wang Hanning. Influence of Online Reviews on Hotels’ Full-occupancy Rates[J]. Tourism Tribune, 31(4): 109-117, 2016.
Banerjee S, Chua A Y K. In Search of Patterns Among Travellers’ Hotel Ratings in TripAdvisor[J]. Tourism Management, 53: 125-131, 2016.
Yang Z, Fang X. (2004). Online service quality dimensions and their relationships with satisfaction. International journal of service industry management.
Kang D, Yongtae P. Based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach.Expert Systems with Applications 41.4 (2014): 1041-1050.
Trappey C , Wu H Y , Liu K L , et al. [IEEE 2013 IEEE 10th International Conference on e-Business Engineering (ICEBE) - Coventry, United Kingdom (2013.09.11-2013.09.13)]
2013 IEEE 10th International Conference on e-Business Engineering - Knowledge Discovery of Service Satisfaction Based on Text Analysis of Critical Incident Dialogues and Clustering Methods[J]. 2013:265-270.
Suzuki T , Gemba K , Aoyama A . Identifying customer satisfaction estimators using review mining[J]. International Journal of Technology Marketing, 2014, 9(2):187-210.
Bueschken J , Allenby G M . Latent Topic Modeling of Consumer Reviews: Linking Text Evaluations to Customer Satisfaction and Brands[J]. Social Science Electronic Publishing,2015.
Xu X , Li Y . The antecedents of customer satisfaction and dissatisfaction toward various types of hotels: A text mining approach[J]. International Journal of Hospitality Management, 2016, 55:57-69.
Wang Y , Lu X , Tan Y . Impact of product attributes on customer satisfaction: An analysis of online reviews for washing machines[J]. Electronic Commerce Research and Applications, 2018, 29:1-11.
鄭小平. 線上評論對網路消費者購買決策影響的實證研究. 中國人民大學: 北京 (2008).
郭瀟. 線上評論對旅遊預訂意向影響的實證分析[D].華南理工大學:2010.
劉陽. 基於文本挖掘的線上旅遊產品銷量影響因素分析. Diss. 碩士學位論文]. 北京: 首都經濟貿易大學, 2018.
肖會敏,祝曉夢.移動電子商務視域下用戶滿意度影響因素研究及實證分析[J].數學的實踐與認識,2018,7:147-155.
趙楊,李齊齊,陳雨涵,et al.基於線上評論情感分析的海淘 APP 用戶滿意度研究[J].數據分析與知識發現,2018,2(11):19-27.
冒小棟,範濤. 基於文本情感分析的共用單車用戶滿意度研究. 電腦系統應用, 2019, 28.1: 222-227.
吳維芳, et al. 評論文本對酒店滿意度的影響: 基於情感分析的方法. 數據分析與知識發現, 2017, 1.3: 62-71.
Dipanjan Sarker.Python文本分析[M].北京:机械工业出版社,2018.
李綱, et al. 一種基於句法分析的情感標籤抽取方法. 圖書情報工作, 2014, 58.14: 12-20.
Wanxiang Che, Zhenghua Li, Ting Liu. LTP: A Chinese Language Technology Platform. In Proceedings of the Coling 2010:Demonstrations. 2010.08, pp13-16, Beijing, China.