簡易檢索 / 詳目顯示

研究生: 洪啟彰
Hung, Chi-Chang
論文名稱: 可修復退化系統之貝氏預防保養模式
A Bayesian preventive maintenance model for deteriorating repairable systems
指導教授: 黃宇翔
Huang, Yeu-Shiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 預防保養非齊次卜瓦松程序貝氏決策分析可修復系統
外文關鍵詞: Repairable system, Nonhomogeneous Poisson process, Bayesian analysis, Preventive maintenance
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

      面對科技的日益進步,系統設備愈來愈龐大且複雜,若一旦發生故障,將導致嚴重的傷害及損失,為維持設備在良好的運作狀態,因此適當的對系統進行預防性保養,以降低可能帶來的損害,日益受到重視。適度的預防保養可以確保系統良好的運作狀態以及提升設備可靠度,然而從經濟的角度來衡量預防保養,過於頻繁的預防保養卻會造成資源、成本的浪費以及設備使用率的降低,故在最適時間執行最適預防保養政策是設備維護的目標。以往的文獻多假設系統的壽命分配服從某種型態的分配且參數為已知常數,然而從實務上發現,系統失效分配通常為未知的或包含不確定參數,因此需要更適合的方法來精確估計這些給定分配的參數或系統的平均壽命,然而缺乏的資料數據並不足以進行傳統的統計分析,而額外的收集這些失效數據可能是非常昂貴,不符合成本效益。因此本研究主要針對隨著時間而逐漸退化的設備,假定系統元件為可維修,且系統因失效而維修的頻率服從非齊次卜瓦松程序,藉由利用貝氏決策分析模式將其分為事前分析、事後分析之前置分析以及事後分析三個階段來建構考量最小修理的預防保養模式,且在本研究的貝氏決策分析的模式中,除了考量專家意見外,為了降低資訊不明所產生的不確定性,尚須考量資料收集的必要性,所以透過事前所考量的專家意見所得之決策,與事後收集資訊後所做之決策進行比較,增加決策之精確度,以提供一個決策分析模式來幫助廠商找出做最適的預防保養策略,並藉此求得最適的預防保養執行次數,使廠商單位時間期望成本最小,最後透過實證應用分析來驗證本研究所建構出的決策模式,並做出總體的結論與建議。

    Abstract

     A system will deteriorate as well as its components with age. To restore or keep the function of a repairable system in good state, preventive maintenance is often performed. Research has been studied in finding optimal preventive maintenance policies for deteriorating repairable systems. However, such a decision involves many uncertainties and the assessment of parameters is often difficult due to scarcity of data. It is therefore important to make use of all information in an efficient way. For instance, prior knowledge is often importance and can conveniently be incorporated by the Bayesian approach. In this paper, a Bayesian decision model is developed to determine the optimal number of preventive maintenance for systems maintained according to a periodic preventive maintenance policy. It is assumed that the status of the system after preventive maintenance is somewhere between as good as new for perfect repair and as good as old for imperfect repair. For failures between two preventive maintenances, the system undergoes minimal repair, and after each minimal repair, the system resumes its function as good as old. A preventive maintenance action will improve the health condition of the system and therefore reduces the effective age. A nonhomogeneous Poisson process with a power law failure intensity function is used to describe the behavior of the deteriorating repairable system. This research focuses on the study of finding the optimal number of preventive maintenance by minimizing the expected cost rate for the deteriorating system with minimal repair at each failure. Finally, a numerical example is given and the results of the preventive maintenance model are discussed by presenting the sensitive analysis.

    目 錄 中文摘要 I 英文摘要 II 目 錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節、研究背景 1 第二節、研究動機 2 第三節、研究目的 3 第四節、研究步驟 4 第五節、論文架構 6 第二章 文獻探討 7 第一節、可修復退化系統 7 一、基本概念 7 二、非齊次卜瓦松程序之退化模型 9 第二節、預防保養之相關文獻 11 一、預防保養之重要性 12 二、預防保養政策之分類 14 三、可修復系統之預防保養政策 16 第三節、貝氏決策分析 18 第三章 可修復退化系統之貝氏預防保養模式 22 第一節、問題描述 22 第二節、研究架構 27 第三節、最適預防保養決策模式之建構 31 一、最適預防保養決策模式 31 二、事前分析及事後分析 35 三、事後分析之前置分析 39 四、自然共軛事前分析之應用 40 第四章 應用分析 45 第一節、實例說明及參數設定 45 第二節、模式分析過程及結果 47 一、事前分析(Prior Analysis) 47 二、事後分析之前置分析(Preposterior Analysis) 48 三、事後分析(Posterior Analysis) 50 第三節、敏感度分析 51 一、強度函數中的比例因子期望值 及退化參數期望值 之影響 54 二、年齡減少因子 之影響 55 三、預防保養相關成本之影響 56 第四節、討論 58 第五章 結論與建議 60 第一節 研究成果 60 第二節 研究限制 61 第三節 未來研究方向 62 參考文獻 63

    參考文獻

    一、中文部分

    陳耀茂,民89,「機率過程導論」,五南,臺北市

    二、英文部分

    Ascher, H. & Freingold, H., Repairable Systems Reliability, Marcel Dekker, New York, (1984).

    Calabria, R. & Pulcini, G., “Inference and test in modeling the failure/repair process of repairable mechanical equipments”, Reliability Engineering and System Safety, vol.67, pp.41-53, (2000).

    Calvin, T.W., “Modeling the bathtub curve, in proceeding of the 1973 Annual Reliability and Maintainability Symposium”, IEEE Press, pp.577-582, (1973).

    Cassady, C.R. & Kutanoglu, E., “Integrating preventive maintenance planning and production scheduling for a single machine”, IEEE Transactions on Reliability, vol.54, no.2, pp.304-309, (2005).

    Chelbi, A. & Ait-Kadi, D., “Analysis of a production/inventory system with randomly failing production unit submitted to regular preventive maintenance”, European Journal of Operational Research, vol.156, pp.712-718, (2004).

    Cheung, K.L. & Hausman, W.H., “Joint determination of preventive maintenance and safety stocks in an unreliable production environment”, Naval Research Logistics, vol.44, pp.257-272, (1997).

    Coetzee, J.L., “The role of NHPP models in the practical analysis of maintenance failure data”, Reliability Engineering and System Safety, vol.56, pp.161-168, (1997).

    Cox, D.R. & Lewis, P.A.W., The Statistical Analysis of Series of Events, Chapman and Hall, London, (1966).

    Crow, L.H., “Reliability analysis for complex repairable systems”, Reliability and Biometry, vol.29, no.3, Proschan F. and Serfling, R.J. SIAM, Philsdelphia, pp.379-410, (1974).

    Das, T.K. & Sarkar, S., “Optimal preventive maintenance in a production inventory system”, IIE Transactions, vol.31, pp.537-551, (1999).

    Dayanik, S. & Gurler, U., “An adaptive Bayesian replacement policy with minimal repair”, Operations Research, vol.50, no.3, pp.552-558, (2002).

    Dedopoulos, I. T. & Smeers, Y., “An age reduction approach for finite horizon optimization of preventive maintenance for single units subject to random failures”, Computers & Industrial Engineering, vol. 34, no.3, pp.643-654, (1998).

    Deshpande, J.V. & Singh, H., “Optimal replacement of improving & deteriorating repairable systems”, IEEE Transactions on Reliability, vol.44, no.3, pp.500-504, (1995).

    Doyen, L. & Gaudoin, O., “Classes of imperfect repair models based on reduction of failure intensity or virtual age”, Reliability Engineering and System Safety, vol.84, pp.45-56, (2004).

    Harter, G.,” The nonhomogeneous Poisson process-a model for the reliability of complex repairable systems”, Microelectronics and Reliability, vol.29, no.3, p381-386, (1989).

    Hjorth, U., “A reliability distribution with increasing, decreasing, constant and bathtub-shaped failure ratea”, Technometrics, vol.22, no.1, pp.99-107, (1980).

    Huang, Y.S. & Bier, V.M., “A natural conjugate prior for the nonhomogenous Poisson process with the power law intensity function”, Communications in Statistics – Simulation and Computation, 27(2), pp.525-551, (1998).

    Huang, Y.S., “A decision model for deteriorating repairable systems”, IIE Transactions, vol.33, pp.479-485, (2001).

    Huang, Y.S., “A structural design of decision support systems for deteriorating repairable systems”, Computers and Operations Research, vol.31, pp.1135-1145, (2004).

    Iravani, S.M.R. & Duenyas, I., “Integrated maintenance and production control of a deteriorating production system ”, IIE Transactions, vol.34, pp.423-435, (2002).

    Jayabalan, V. & Chaudhuri, D., ”Optimal maintenance and replacement policy for a deteriorating system with increased mean downtime”, Naval Research Logistics, vol.39, pp.67-78, (1992).

    Lai, K.K., Leung, K.N.F., Tao, B. & Wang, S.Y., “A sequential method for preventive maintenance and replacement of a repairable single-unit system”, Journal of the Operational Research Society, vol.52, pp.1276-1283, (2001).

    Lee, L., “Testing adequacy of the Weibull and log linear rate models for a Poisson process”, Technometrics, vol.22, no.2, pp.195-199, (1980).

    Lin, D., Zuo, M.J. & Yam, R.C.M., “Sequential imperfect preventive maintenance models with two categories of failure modes”, Naval Research Logistics, vol.48, pp.172-183, (2001).

    Lin, D., Zuo, M.J., Yam, R.C.M. & Meng, M.Q.H., “Optimal system design considering warranty, periodic preventive maintenance, and minimal repair”, Journal of the Operational Research Society, vol.51, pp.869-874, (2004).

    Love, C.E. & Guo, R., “Utilizing Weibull failure rates in repair limit analysis for equipment replacement/preventive maintenance decisions”, Journal of the Operational Research Society, vol.47, pp.1366-1376, (1996).

    Martorell, S., Sanchez, A. & Serradell, V., ”Age-dependent reliability model considering effects of maintenance and working conditions”, Reliability Engineering and System Safety , vol.64, pp.19-31, (1999).

    Mazzuchi, T. A. & Soyer, R., “A Bayesian perspective on some replacement strategies”, Reliability Engineering and System Safety, vol.51, pp.295-303, (1996).

    Moustaf, M.S., Abdel Maksoud, E.Y. & Sadek, S., “Optimal major and minimal maintenance policies for deteriorating systems”, Reliability Engineering and System Safety, vol.83, pp.363-368, (2004).

    Müller, P. & Parmigiani, G., “Optimal design via curve fitting of Monte Carlo experiments”, Journal of the American Statistical Association – Theory and Methods, 90, pp.1322-1330, (1995).

    Park, D. H., Jung G. M., & Yum, J. K., “Cost minimization for periodic maintenance policy of a system subject to slow degradation”, Reliability Engineering and System Safety, vol.68, pp.105-112, (2000).

    Percy, D.F., “Bayesian enhanced strategic decision making for reliability”, European Journal of Operational Research, vol.139, pp.133-145, (2002).

    Percy, D.F. & Kobbacy, K.A.H., “Determining economical maintenance intervals”, International Journal of Production Economics, vol.67, pp.87-94, (2000).

    Pham, H. & Wang, H., “Imperfect Maintenance”, European Journal of Operational Research, vol.94, pp.425-438, (1996).

    Pham, H. & Wang, H., “Optimal age-dependent preventive maintenance policies with imperfect maintenance”, International Journal of Reliability, vol.3, pp.119-135, (1996).

    Procaccia, H., Cordierb, R. & Muller, S., “Application of Bayesian statistical decision theoryfor a maintenance optimization problem”, Reliability Engineering and System Safety, vol.55, pp.295-303, (1997).

    Pulcini, G., “On the overhaul effect for repairable mechanical units: a Bayes approach”, Reliability Engineering and System Safety, vol.70, pp.85-94, (2000).

    Rigdon, S.E. & Basu, A.P., Statistical methods for the reliability of repairable systems, Wiley, New York, (2000).

    Rosqvist, T., “Bayesian aggregation of experts' judgements on failure intensity”, Reliability Engineering and System Safety, vol.70, pp.283-289, (2000).

    Salem, S.A., “Bayesian estimation of a non-linear failure rate from censored samples type ІІ”, Microelectronics and Reliability, vol.32, no.10, pp.1385-1388, (1992).

    Sander, P. & Badoux, R., Bayesian methods in reliability, Kluwer Academic Publishers, Boston, (1991).

    Seo, J.H. & Bai, D.S., “An optimal maintenance policy for a system under periodic overhaul”, Mathematical and Computer Modelling, vol.39, pp.373-380, (2004).

    Sheu, S.H., Yeh, R.H., Lin, Y.B. & Juang, M.G., “A Bayesian perspective on age replacement with minimal repair”, Reliability Engineering and System Safety, vol.65, pp.55-64, (1999).

    Sheu, S.H., Yeh, R.H., Lin, Y.B. & Juang, M.G., “A Bayesian approach to an adaptive preventive maintenance model”, Reliability Engineering and System Safety, vol.71, pp.33-44, (2001).

    Sheu, S.H.,Yeh, R.H.,Lin, Y.B & Liao, G.L., “Optimal policies with decreasing probability of imperfect maintenance”, IEEE Transactions on Reliability, vol.54, no.2, pp.347-357, (1999).

    Shin, I., Lim, T.J. & Lie, C.H., “Estimating parameters of intensity function and maintenance effect for repairable unit”, Reliability Engineering and System Safety, vol.54, pp.1-10, (1996).

    Shirmohammadi, A.H., Love, C.E. & Zhang, Z.G., “An optimal maintenance policy for skipping imminent preventive maintenance for systems experiencing random failures”, Journal of the Operational Research Society, vol. 54, pp.40-47, (2003).

    Silver, E.A. & Fiechter, C.N., “Preventive maintenance with limited historical data”, European Journal of Operational Research, vol.82, pp.125-144, (1995).

    Stadje,W. & Zuckerman, D., “A generalized maintenance model for stochastically deteriorating equipment”, European Journal of Operational Research, vol.89, pp.285-301, (1996).

    Tsai, Y.T., Wang, K.S. & Teng, H.Y., “Optimizing preventive maintenance for mechanical components using genetic algorithms”, Reliability Engineering and System Safety, vol.74, pp.89-97, (2001).

    Tseng, S.T., “Optimal preventive maintenance policy for deteriorating production systems”, IEEE Transactions on Reliability, vol.28, pp.687-694, (1996).

    Usher, J.S., Kamal, A.H. & Syed, W.H., “Cost optimal preventive maintenance and replacement scheduling”, IIE Transactions, vol.30, pp.1121-1128, (1998).

    Wang, H., “A survey of maintenance policies of deteriorating systems”, European Journal of Operational Research, vol.139, pp.469-489, (2002).

    Wu, S. & Clements-Croome, D., “Preventive maintenance models with random maintenance quality”, Reliability Engineering and System Safety, vol.90, pp.99-105, (2005).

    Yanez, M., Joglar, F. & Modarres, M., “Generalized renewal process for analysis of repairable systems with limited failure experience”, Reliability Engineering and System Safety, vol.77, pp.167-180, (2002).

    Yamada, S. & Osaki, S., “Reliability growth models for hardware and software systems based on nonhomogeneous Poisson processes”, Microelectronics and Reliability, vol.23, pp.91-112, (1983).

    Zequeira, R.I., Prida, B. & Valde, J.E., “Optimal buffer inventory and preventive maintenance for an imperfect production process”, International Journal of Production Research, vol. 42, no.5, pp.959-974, (2004).

    Zhangy, Y.L., Yamz, R.C.M., & Zuo, M.J., “Optimal replacement policy for a deteriorating production system with preventive maintenance”, International Journal of Systems Science, vol. 32, no.10, pp.1193-1198, (2001).

    Zhao, Y.X., “On preventive maintenance policy of a critical reliability level for system subject to degradation”, Reliability Engineering and System Safety, vol.79, pp.301-308, (2003).

    下載圖示 校內:2007-06-12公開
    校外:2007-06-12公開
    QR CODE