| 研究生: |
廖竟帆 Liao, Ching-Fan |
|---|---|
| 論文名稱: |
共享經濟下外送平台考量附加服務之策略 Strategy for food delivery platform considering add-on service |
| 指導教授: |
莊雅棠
Chuang, Ya-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 共享經濟 、附加服務 、馬可夫決策過程 |
| 外文關鍵詞: | sharing economy, add-on service, Markov decision process |
| 相關次數: | 點閱:127 下載:34 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在共享經濟中美食外送的議題上,外送員和訂單的數量直接影響了外送平台在送餐上的效率。近年來平台為了追求更大的獲利開始使用批量運送(batch delivery)的外送模式,藉由將多位顧客的訂單合併至同一位外送員,相較於以往一趟一單的模式有更高的效率。本研究建立一個美食外送系統,將餐廳和外送平台視為一個服務供應商,欲探討之問題為在不同外送員數量和訂單數之狀態下,平台是否提供顧客一個附加服務(add-on service)做選購,將原本的批量運送升級成專用運送,顧客的訂單將獲得一對一的配送,未加購此服務者則維持使用批量運送,平台透過不同的策略(提供附加服務與否)來最大化其收益。過往相關文獻多將問題著重於單一的運送方式,抑或是工資和外送服務的訂價上。而本研究則將外送員和外送平台放在同一陣線上追求共同目標,因此不考慮工資訂價上的問題並將外送服務的訂價設為已知,並針對外送平台在兩種運送策略上的不同帶來之效益做比較。本研究以馬可夫決策過程建構模型,並使用動態規劃(dynamic programming)的方法進行求解。透過模擬三種不同的市場狀況進行數值分析後我們發現,不論是在餐廳忙碌程度、選購附加服務的顧客比例和附加服務價格的訂價比例,平台在最佳決策的使用上都有一定程度的影響,其中又屬附加服務之定價和外送價格之間的比例,最大的影響了平台在最佳決策使用上的差異。而在長期下大部分的市場狀況中,絕大多數的狀態在提供附加服務時確實能為平台帶來最佳的收益表現。
This study addresses food delivery efficiency in the sharing economy, where the number of courier and orders directly impacts platform performance. To pursue greater profits, platforms have adopted batch delivery, consolidating multiple customer orders for more efficient delivery. The research establishes a food delivery system, treating restaurants and platforms as service providers. It investigates the impact of offering customers an add-on service, upgrading from batch delivery to dedicated one-to-one delivery, while retaining the batch delivery option for non-extrachargers. The objective is to maximize platform revenue through different strategic approaches. Unlike previous literature focusing on single delivery methods or wage and pricing issues, this study aligns couriers and platforms towards a common goal, disregarding salary pricing and considering delivery service pricing as known. It compares the benefits derived from different delivery strategies of the two platforms.
Utilizing a Markov decision process model and dynamic programming, the study simulates three market conditions to analyze various factors, such as restaurant busyness, customer add-on service adoption, and pricing ratios. Findings reveal that the platform’s optimal decision-making is influenced by restaurant busyness, the proportion of customers purchasing add-on service, and the pricing ratio of the additional service. The pricing ratio between add-on service and delivery has the most significant impact on platform decision divergence. Ultimately, in most long-term market conditions, providing add-on service yields the best revenue performance for the platform. The study sheds light on enhancing revenue and efficiency in the sharing economy food delivery sector, offering valuable insights for industry stakeholders.
Adams, W. J., & Yellen, J. L. (1976). Commodity bundling and the burden of monopoly. The Quarterly Journal of Economics, 90(3), 475–498.
Ancarani, F., Gerstner, E., Posselt, T., & Radic, D. (2009). Could higher fees lead to lower prices? Journal of Product & Brand Management, 18(4), 297–305.
Bai, J., So, K. C., Tang, C. S., Chen, X., & Wang, H. (2019). Coordinating supply and demand on an on-demand service platform with impatient customers. Manufacturing & Service Operations Management, 21(3), 556–570.
Benjaafar, S., Ding, J.-Y., Kong, G., & Taylor, T. (2022a). Labor welfare in on-demand service platforms. Manufacturing & Service Operations Management, 24(1), 110–124.
Benjaafar, S., & Hu, M. (2020). Operations management in the age of the sharing economy: What is old and what is new? Manufacturing & Service Operations Management, 22(1), 93–101.
Benjaafar, S., Kong, G., Li, X., & Courcoubetis, C. (2019). Peer-to-peer product sharing: Implications for ownership, usage, and social welfare in the sharing economy. Management Science, 65(2), 477–493.
Benjaafar, S., Wu, S., Liu, H., & Gunnarsson, E. B. (2022b). Dimensioning on-demand vehicle sharing systems. Management Science, 68(2), 1218–1232.
Boysen, N., Briskorn, D., & Schwerdfeger, S. (2019). Matching supply and demand in a sharing economy: Classification, computational complexity, and application. European Journal of Operational Research, 278(2), 578–595.
Cachon, G. P., Daniels, K. M., & Lobel, R. (2017). The role of surge pricing on a service platform with self-scheduling capacity. Manufacturing & Service Operations Management, 19(3), 368–384.
Chen, M., & Hu, M. (2020). Courier dispatch in on-demand delivery. Available at SSRN 3675063.
Cohen, B., & Kietzmann, J. (2014). Ride on! mobility business models for the sharing economy. Organization & Environment, 27(3), 279–296.
Felson, M., & Spaeth, J. L. (1978). Community structure and collaborative consumption: A routine activity approach. American Behavioral Scientist, 21(4), 614–624.
Fruchter, G. E., Gerstner, E., & Dobson, P. W. (2011). Fee or free? how much to add on for an add-on. Marketing Letters, 22(1), 65–78.
Gellman, R. (1996). Disintermediation and the internet. Government Information Quarterly, 13(1), 1–8.
George, D. K., & Xia, C. H. (2011). Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. European Journal of Operational Research, 211(1), 198–207.
Hamari, J., Sj¨oklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the Association for Information Science and Technology, 67(9), 2047–2059.
He, L., Mak, H.-Y., & Rong, Y. (2019). Operations management of vehicle sharing systems. In Sharing Economy, (pp. 461–484). Springer.
He, L., Mak, H.-Y., Rong, Y., & Shen, Z.-J. M. (2017). Service region design for urban electric vehicle sharing systems. Manufacturing & Service Operations Management, 19(2), 309–327.
Hu, M. (2019). Sharing economy: making supply meet demand, vol. 6. Springer. Papachristos, I., & Pandelis, D. G. (2018). Optimal dynamic allocation of collaborative servers in two station tandem systems. IEEE Transactions on Automatic Control, 64(4), 1640–1647.
Stigler, G. J. (1968). Price and non-price competition. Journal of Political Economy, 76(1), 149–154.
Thornton, E., & Arndt, M. (2003). Fees! fees! fees! companies can't raise prices, so they're socking consumers with hundreds of hidden charges–and that's creating stealth inflation and fueling a popular backlash. Business Week, 3851, 98.
Weber, T. A. (2016). Product pricing in a peer-to-peer economy. Journal of Management Information Systems, 33(2), 573–596.