| 研究生: |
施宇豪 Shih, Yu-Houl |
|---|---|
| 論文名稱: |
微液流道壓力分佈之量測分析 Pressure Drop Distribution Measurement Analysis In Micro Liquid Flow Channel |
| 指導教授: |
高騏
Gau, C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 微液流道 |
| 外文關鍵詞: | micro liquid flow channel |
| 相關次數: | 點閱:57 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要以去離子水 (DI Water) 為工作流體,探討矩形微流道的冷流場現象。微液流道分別由矽 (silicon) 與SU-8厚膜光阻兩種材料構成,微流道的寬度固定為500μm,高度依材料的不同分別約為15μm與35μm。因為本實驗的微流道其高寬比 (aspect ratios) 大於8倍以上 [16],量測分析時採用兩固定平行平板間的內流場理論。
為了避免因實驗分析時壓力損失的估算誤差,本文建立一分析關係式,藉此可精準的得知速度完全發展區的壓力差。如此便能有利於後續相關參數的分析。
經由微液流道實驗取值的分析之後,結果顯示質量流率 (mass flow rate) 相較於傳統理論有非常明顯的縮減,且雷諾數 (Reynolds numbers, Re) 亦縮小許多,而表面摩擦係數 (skin friction coefficient, Cf) 與摩擦因子 (friction factor, f) 均比傳統理論值還大。
The purpose of the thesis is to use DI water as the work fluid and to investigate the cold liquid fluid flow phenomenon of the rectangular microchannel. Microchannels are constructed of the silicon and SU8 photoresist respectively. The widths of the microchannels are always 500μm, and the heights of the microchannels are about 15μm and 36μm in different materials respectively. Because the aspect ratio of our microchannel is bigger than 8[16], I take the parallel plates theory in my analysis.
To avoid the error of the pressure loss calculation in my experiment analysis, I construct a correlation about the difference of the microchannel length and the driven pressure drop from inlet sump to outlet sump. To use the correlation I can get the pressure drop in fully velocity development region precisely. And the correlation formulation is conveniently to analysis another relative factors.
The results of our microchannel experiment demonstrate that the mass flow rate is less than the prediction of the conventional theory. And the introduced Reynolds number is less than the prediction of the conventional theory, but the skin friction coefficient (Cf) and friction factor (f) is bigger than the prediction of the conventional theory.
[1] T.R. Anthony, “Anodic bonding of imperfect surfaces, ”J. Appl. Phys, Vol. 54, No.5, pp.2419, 1983.
[2] T.A. Core, W.K. Tsang, and S.J. Sherman, “Fabrication Technology for an Integrated Surface-Micromachined Sensor, ”Solid State Technology, October, pp.39-47, 1993.
[3] Hunter R. J., Zeta Potential in Colloid Science: Principles and Applications. Academic Press, New York, 1981.
[4] X. N. Jiang, Z. Y. Zhou, J. Yao, Y. Li, and X. Y. Ye, “Micro-Fluid Flow in Microchannel, ”The eighth International Conference on Solid-State Sensors and Actuators, and Erosensors IX, pp.137-320 1995.
[5] J. Judy, D. Maynes, and B.W. Webb, “Liquid Flow Pressure Drop In Microtubes, ”pp.149-154, 2001.
[6] Jianqiang Liu & Yu-Chong Tai, Chih-Ming Ho, “MEMS for Pressure Distribution Studies of Gaseous Flows in Microchannels, ”IEEE, 209-215, 1995.
[7] Robin H. Liu, Michael J. Vasile, and David J. Beebe, “The Fabrication of Nonplanar Spin-On Glass Microstructures, ”Journal of Microelectromechanical systems, vol.8, no.2, June 1999.
[8] G.MOHIUDDIN MALA, DONGQING LI and J. D. DALE, “Heat transfer and fluid flow in microchannels, ” Int. J. Heat Mass Transfer, Vol. 40, No. 13, pp. 3079-3088, 1997.
[9] G. M. Mala, D. Li, “Flow characteristics of water in microtubes, ”Int. J. Heat and Fluid Flow, Vol.20, pp.142-148, 1999.
[10] J. Pfahler, J. Harley, and H. Bau, Jay N. Zemel, “Liquid Transport in Micron and Submicron Channels, ”Sensors and Actuators, vol. A21-A23, pp.431-434, 1990.
[11] J. Pfahler, J. Harley, and H. Bau, Jay N. Zemel, “Gas and Liquid Flow in Small Channels, ”Micromechanical Sensors, Actuators, and Systems, ASME, DSC-Vol. 32, pp. 49-60, 1991.
[12] J.N. Pfahler, “Liquid transport in micron and submicron channels, ”Ph. D Thesis, of Mech. Eng. and Appl. Mech, University of Pennsylvania, PA, USA, 1992.
[13] X.F. Peng, G. P. Peterson, and B. X. Wang, “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels, ”Experimental Heat Transfer, vol. 7, pp.249-264, 1994.
[14] X.F. Peng, G.P. Peterson, and B.X. Wang, “Heat Transfer characteristics of water flowing through microchannels, ”J. Exp. Heat Transfer, 7(4), pp.265-283, 1995.
[15] X.F. Peng, G. P. Peterson, “Convective heat transfer and flow friction for water flow in microchannel structures, ”Int. J. Heat Mass Transfer, Vol. 39,No. 12, pp.2599-2608, 1996.
[16] Merle C. Potter, David C. Wiggert著,吳順治‧譯, “流體力學/ Mechanics of fluids, ” 東華書局,臺北市,pp.226-238,1st,1995。
[17] Qu Weilin, Gh. Mohiuddin Mala, Li Dongqing, “Pressure-driven water flows in trapezoidal silicon microchannels, ” International Journal of Heat and Mass Transfer 43, pp.353-364, 2000.
[18] Liqing Ren, Weilin Qu, Dongqing Li, “Interfacial electrokinetic effects on liquid flow in microchannels, ”International Journal of Heat and Mass Transfer 44, pp.3125-3134, 2001.
[19] M. Shinbo, K. Furukawa, K. Fukuda K. Tanzawa, “Silicon-silicon direct bonding method, ”J. Appl. Phys. Vol. 60, No.8, pp.2987, 1986.
[20] S.M. Sze, “SEMICONDUCTOR SENSORS, ”1994.
[21] Stanley, R.S., “Two-phase Flow in Microchannels, ”Ph.D. Thesis, Louisiana Technological University, 1997.
[22] Akinobu Satoh, “Water glass bonding, ”Sensors and Actuators, A72, pp.160-168, 1999.
[23] D.B. Tuckerman, and R.F.W. Pease, “High-performance Heat Sinking for VLSI, ”IEEE Electron Device Letters, Vol.EDL-2, No.5 May 1981.
[24] B.X. Wang, and X.F. Peng, “Experimental investigation on forced-flow convection of liquid flow through microchannels, ” Int. J. Heat Mass Transfer, 37(Suppl. 1) 73-82, 1994.
[25] Xu B., Ooi K.T., Wong N.T., Choi W.K., "Experimental investigation of flow friction for liquid flow in microchannels, "Int. Comm. Heat Mass Transfer, Vol.27, No.8, pp.1165-1176, 2000.
[26] D. Yu, R. Warrington, R. Barron, and T. Ameel, “An experimental and theoretical investigation of fluid flow and heat transfer in microtubes, ” ASME/JSME Thermal Engineering Conference, Vol. 1, pp. 523-530, 1995.
[27]Chien-Yuh Yang, Hsin-Tang Chien, Shu-Ru Lu and Ruey-Jong Shyu,“Friction Characteristics Of Water, R-134a And Air In Small Tubes, ”pp.162-167, 2001.
[28] 莊達人,“VLSI製造技術”,高立圖書,pp. 146-367,臺北市,1998。
[29]楊金城,柯富祥,吳政三,“自動化阻劑處理系統介紹”,科儀新知,22(4),pp.46-61,90.2。