簡易檢索 / 詳目顯示

研究生: 陳信利
Chen, Shin-Li
論文名稱: 矩形鳍片鳍管式熱交換器之熱液動性能研究
Numerical and Experimental Studies on the Thermal-Hydraulic Characteristics of Rectangular Finned-tube Heat Exchangers
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 93
中文關鍵詞: 橢圓管矩形鰭片鰭管式熱交換器鰭片效率
外文關鍵詞: elliptic tube, fin efficiency, finned-tube heat exchangers, rectangular fin
相關次數: 點閱:208下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分別以理論分析及實驗方法探討矩形鰭片鰭管式熱交換器之熱液動性能,其中橢圓管長短軸比為(2.83:1)。在理論分析方面,利用二維鰭片效率分析法(two-dimensional fin efficiency analysis)之數值運算方式計算出鰭片熱效率,藉此分析矩形鰭片在全乾、半乾濕以及全濕之情況下對於熱交換器之整體性能的影響。在實驗測試方面,利用吸入型開放式熱交換器風洞測試系統,針對矩形鰭片鰭管式熱交換器分別在乾、濕盤管操作條件下,量測不同鰭片高度及不同管排列方式時的管外側熱傳係數及壓降特性曲線。

    在理論分析方面詳述矩形鰭片的二維溫度分佈場以及探討鰭片熱效率與空氣相對溼度之間的關係,由於當熱交換器應用在除濕時、針對空氣冷卻時是否有凝結水產生與否,鰭片之狀況可分為全乾式、半乾濕式及全濕式三種情形。由理論結果發現到,鳍片高度7mm與10mm下的乾式鰭片熱效率分別較全濕式熱效率高18%及25%,鰭片熱效率於全乾式時鰭片熱效率將與空氣相對溼度無關,但是在半乾濕時,鰭片熱效率則會隨著空氣相對溼度增加而快速下降,而在全濕時鰭片熱效率僅隨著空氣相對溼度的增加而略為下降。

    由實驗結果發現在入口風速1~6 m/s下,當空氣通過乾、濕盤管時,空氣側熱傳係數會隨著正向速度的增加而增加,其中交錯排列矩形鰭片鰭管熱交換器的熱傳因子j與顯熱熱傳因子js(Test Section A and C)比對齊排列矩形鰭片鰭管的j與js(Test Section B and D)高15~36%。而在濕盤管質傳因子jt與雷諾數之關係中,交錯排列(Test Section A and C)比對齊排列(Test Section B and D)的jt高20~36%。

    由熱交換器性能測試實驗中發現,交錯排列矩形鰭管鰭管式熱交換器的壓降因子f值 (Test Section A and C)比對齊排列(Test Section B and D)高15~30%,且濕盤管的壓降因子f較乾盤管高6~12%。

    The present investigation is to examine experimentally and numerically the thermal-hydraulic and mass transfer characteristics for rectangular finned-tube heat exchangers with elliptic tube having axis ratio of 2.83:1. Four types of finned-tube configurations have been investigated under the dry and wet conditions for different values of inlet frontal velocity ranging from 1 to 6 m/s. The results indicated that the sensible Colburn factor js, and the friction factor f for the wet coils are, respectively, 15 ~ 36 % and 6 ~ 12% higher than those for dry coils. The j, jt, and f with staggered arrangements are, 15~36% 20~36% and 15~30%, respectively, high than those for the in-lined arrangements. In addition, a two–dimensional fin efficiency analysis for the rectangular fins with elliptic tube with fin height 7mm and 10 mm are presented for a wide range of air relative humidity. It is shown that the fin efficiency is decreased with the increase of relative humidity, and the fully wet fin efficiency are 18% and 25% lower than that for a dry fin, respectively.

    摘要 I 英文摘要 III 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 本文目的 7 第二章 鳍片熱效率理論分析 10 2-1 矩形鳍片鰭管式熱交換器之物理模型 10 2-2 理論分析 11 2-3 鳍片熱效率方程式 18 2-4 數值理論分析 23 第三章 實驗設備 31 3-1 實驗設備簡介 31 3-2 測試本體 33 第四章 實驗數據分析 44 4-1 熱傳量之計算 44 4-2 管內側(水)熱傳係數之計算 47 4-3 管壁熱阻之計算 48 4-4 鳍片表面效率之計算 49 4-5 熱交換器整體熱傳係數與熱傳係數之計算 49 4-6 熱傳因子與壓降因子之計算 55 第五章 結果與討論 60 5-1 矩形鳍片熱效率之結果分析 60 5-2 乾濕盤管實驗結果 63 第六章 結論 84 參考文獻 86 附錄 90

    1. Briggs, D.E. and Young, E. H., Convection Heat transfer and pressure Drop of
    Air Flowing across Triangular Pitch Banks of Finned Tubes, Chem. Eng. Prog.
    Symp. Ser., Vol.59, No.41, pp. 1-10, 1963.

    2. Robinson, K. K. and Briggs, D. E., Pressure Drop of Air Flowing across
    Triangular Pitch Banks of Finned Tubes, Chem. Eng. Prog. Symp. Ser., Vol.62,
    No.64, pp. 177-184, 1966.

    3. Idem, S. A., Jacobi, A.M. and Goldchmidt, V. W., Heat Transfer
    Characterization of a Finned-Tube Heat Exchanger (With and Without
    Condensation), Transaction of the ASME, Vol.112. pp. 64-70, 1990.

    4. Rich, D. G., The Effect of Fin Spacing on the Heat Transfer and Friction
    Performance of Multi-Row Plate Fin-and-Tube Heat Exchangers, ASHRAE Trans.,
    Vol.79, Part2, pp. 137-145, 1973.

    5. Rich, D. G., The Effect of the Number of Tube Rows on the Heat Transfer
    Performance of Smooth Plate Fin-and-Tube Heat Exchangers, ASHRAE Trans.,
    Vol.81, Part1, pp. 307-317, 1975.

    6. Gray, D. L. and Webb, R. L., Heat Transfer and Friction Correlations for
    Plate Fin-and-Tube Heat Exchangers Having Plain Fins, Proc. 9th Int. Heat
    Transfer Conference, San Francisco, U.S.A., 1986.

    7. Wang, C. C., Jang, J. Y., and Chiou, N. F., A Heat Transfer and Friction
    Correction for Wavy Fin and Tube Heat Exchangers, Int. J. of Heat Mass
    Transfer, Vol.42, No.10, pp. 1919-1924, 1999.

    8. Dunwoody, N. T., Thermal Results for Forced Heat Convection through Elliptic
    Ducts, J. of Applied Mech., Vol.29, pp. 165-170, 1962.

    9. Schenk, J. and Han, B. S., Heat Transfer from Laminar Flow in Ducts with
    Elliptic Cross Section, Appl. Sci. Res., Vol.17, pp. 96-114., 1967.

    10. Brauer, H., Compact Heat Exchangers, Chem.&Process Engineering, London,
    Vol.45, No.8, pp. 451-460, 1964.

    11. Liu, M. S., Leu, J. S., Liaw, J. S., and Wang, C. C., 3-D Simulation of the
    Thermal-Hydraulic Characteristics of Louvered Fin-and-Tube Heat Exchangers
    with Oval Tubes, Symposium on The Use of Computational Fluid Dynamics in
    Heat Exchanger Design, 2000 ASHRAE ANNUAL MEETING, Minneapolis, MN, June
    24-28.

    12. Jang, J. Y. and Yang, J. Y., Experimental and 3-D Numerical Analysis of the
    Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers,
    Heat Transfer Engineering, Vol.19, No.4, pp. 55-67, 1998.

    13. McQuiston, F. C. and Parker, J. D., Heating, Ventilating and Air
    Conditioning Analysis and Desig, New York: John Wiley, pp 604-613, 1994.

    14. ARI Standard 410-72, Forced-Circulation Air-Cooling and Air-Heating Coils,
    Air-Conditioning & Refrigeration Institute, 1972.

    15. Threlkeld, J. L., Thermal Environment Engineering, 2nd Ed. New York:
    Prentice-Hall, 1970.

    16. McQuiston, F. C., Fin Efficiency with Combined Heat and Mass Transfer,
    ASHRAE Transaction, Vol. 71, pp 350-355, 1975.

    17. Coney, J. E. R., Kazeminejad, H. and Sheppard, C. G. W., Dehumidification of
    air on a Vertical Rectangular Fin: A Numerical Study, Proc. Instn. Mech.
    Engrs., Vol. 203, pp 141-146, 1989.

    18. Coney, J. E. R., Sheppard, C. G. W. and Shafei, E. A. M., Fin Performance
    with Dehumidification from Humid Air: A numerical Investigation,
    International Journal of Heat & Fluid Flow, Vol. 10, pp 224-231, 1989, 1989.

    19. Chen, L. T., Two-Dimensional Fin Efficiency with Combined Heat and Mass
    Transfer between Water-Wetted Fin Surface and Moving Moist Air Stream,
    International Journal of Heat & Fluid Flow., Vol. 12, pp 71-76, 1991.

    20. Elmahdy, A. H. and Biggs, R. C., Efficiency of Extended Surfaces with
    Simultaneous Heat and Mass Transfer, ASHRAE transactions, Vol.89, pp.
    135-143, 1983.

    21. Hong, K. T. and Webb, R. L., Calculation of Fin Efficiency for Wet and Dry
    Fins. HVAC & R Research, Vol. 2, pp. 27-41, 1995.

    22. Wang, C. C., Hsieh, Y. C. and Lin, Y. T., Performance of Plate Finned Tube
    Heat Exchangers under Dehumidifying Conditions, ASME Journal of Heat
    Transfer, Vol. 119, pp 109-117, 1997.

    23. Rosario, L. and Rahman M. M., Analysis of Heat Transfer in a Partially Wet
    Radial Fin Assembly During Dehumidification, International Journal of Heat
    and Fluid Flow, Vol. 20, pp 642-648, 1999.

    24. Liang, S. Y., Wong, T. N. and Nathan, M. M., Comparison of One-Dimensional
    and Two-Dimension Models for Wet Surface Fin Efficiency of a Plate-Fin-Tube
    Heat Exchanger, Applied Thermal Engineering., Vol. 20, pp 941-962, 2000.

    25. Wu, G. and Bong, T. Y., Overall Efficiency of a Straight Fin with Combined
    Heat and Mass Transfer, ASHRAE Transactions Part 1, Vol. 100, pp 367-374,
    1995.

    26. Salah, El-Din, Performance Analysis of Partially-Wet Fin Assembly, Applied
    Thermal Engineering, Vol. 18, pp 337-349, 1998.

    27. Rosario, L. and Rahman, M. M., Analysis of heat transfer in a partially wet
    radial fin assembly during dehumidification, International Journal of Heat
    and Fluid Flow, Vol. 20, pp. 642-648, 1999.

    28. Besendnjak, D. and Poredos, A., Efficiency of Cooled Extended Surfaces,
    International Journal of Refrigeration, Vol. 21, pp 372-380, 1998.

    29. Jang, J. Y., and Yang, J. Y., Experimental and Numerical Analysis of the
    Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers,
    Heat Transfer EngineerIng, Vol. 19, No. 4, pp 55-67, 1998.

    30. Shah, R. K., Heat Exchanger Basic Design Methods, Low Reynolds Number Flow
    Heat Exchanger, edit by S. Kakac, R. K. Shah and A. E. Bergles, Hemisphere,
    New York, pp. 21-72, 1983.

    31. Thompson, J. F., Thames, F. C. and Mastin, C.W., Automatic Numerical
    Generation of Boby-Fitted Curvilinear Coordinate System for Fields Containing
    any Number of Arbitrary Two-Dimensional Bodies, Journal of Computational
    Physics. Vol. 15, pp. 299-310, 1974.

    32. Thompson, J. F., Warsi, Z. U. A. and Mastin, C.W., Numerical Grid Generation
    Foundations and Applications. North Holland, 1985.

    33. Gnielinski, V, New Equation for Heat and Mass Transfer in Turbulent Pipe and
    Channel Flow, Int. Chem. Eng., Vol.16, pp. 359-368, 1976.

    34. Shan, K., Heat Exchangers Basic Design Method, in Low Reynolds Number Flow
    Heat Exchangers, Edited by S. KaKas, R. K. Shah, and A. E. Bergles, pp.
    21-72, Hemisphere/McGraw-Hill, Washington, D. C., 1983.

    35. Eckert, E. R. G. and Drake, R. M., Jr., Heat and Mass Transfer, McGraw-Hill
    Inc., New York, 1959.

    36. ASHRAE Handbook, Fundamentals, 1997. ASHRAE.

    37. Reid, R. C., J. M. Prausnitz, and B. E. Poling, The properties of gases and
    liquid, pp. 587, New. York. : McGraw-Hill., 1988.

    38. Kays, W. M. and London, A. L., Compact Heat Exchangers, 3rd., McGraw-Hill,
    New York, 1984.

    下載圖示 校內:2004-06-10公開
    校外:2006-06-10公開
    QR CODE