簡易檢索 / 詳目顯示

研究生: 洪暐智
Hong, Wei-Jhih
論文名稱: 以分子動力學研究Ni-Ti形狀記憶合金之特性
The study on the properties of Ni-Ti shape memory alloy by molecular dynamics simulation
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 138
中文關鍵詞: 分子動力學相轉換形狀記憶效應
外文關鍵詞: molecular dynamics, phase transformation, shape memory effect
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學研究Ni-Ti合金塊材之形狀記憶特性,觀察不同Ni含量比例、不同原子分布與不同晶格排列方向的情況下對相轉變的影響,並在低溫時施予不同的複合加載至塑性變形,再進行升降溫循環以檢測任意加載所造成的塑性變形是否皆可經溫度循環而回復原狀。
    由模擬結果得知Ni-Ti合金在高溫時以體心立方結構(沃斯田體相)穩定存在,在低溫時,Ni比例不為50%的合金皆轉變為斜方體結構(麻田散體相),相變溫度隨著Ni含量增加而提高。此外,對於Ni含量為53%的合金而言,其相轉變溫度不受其內部原子分布位置與晶格排列方向所影響。
    由模擬結果得知,在低溫下Ni-Ti合金並非施予任意加載至塑性變形後皆具有形狀記憶特性,以CNP參數法分析可發現唯有施加能造成內部雙晶方向層於特定平面上移動的加載才能透過溫度循環使合金回復原狀。在最大剪應力理論中,觀察到具有形狀記憶特性的模擬其最大剪應力值較其餘無法回復原狀者小。透過滑移向量輔助可得知施予使內部原子產生差排的加載方式不具有形狀記憶效應。

    We employed molecular dynamics simulation to investigate the shape memory properties of Ni-Ti alloy bulks. The effects of Ni composition ratio and the simulated crystal orientation on phase transformation were studied. At low temperature, different loading conditions were applied to the alloy bulk till plasticity took place. Then the deformed models went through the temperature cycle without loadings to examine whether it would restore to its original shape or not.
    Form the simulation, we found the Ni-Ti alloy is body-centered cubic structure (austenite phase) at high temperature and transforms to monoclinic structure (martensite phase) at certain temperature, except for the 50% Ni composition ratio. The phase transformation temperature was affected by the Ni composition ratio. It was observed that the simulated models with different Ni atomic distribution and crystal orientations would have the same phase transformation temperature.
    For different loading simulations, it was found that not every plastic deformed model would restore to its original shape after the thermal cycle. Combined with common neighbor parameter observation, it was noticed that only those were able to force the twinning variants to move on the specific plane would exhibit shape memory behavior. For those loadings which would restore to its original shape, the corresponding maximum shear stress was clearly smaller than those that did not restore. With the assist of slip vector, it was known that the model which had dislocation would not have shape memory properties.

    摘要 I Abstract II 致謝 XVIII 目錄 XIX 圖目錄 XXI 表目錄 XXIX 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本文架構 3 第二章 分子動力學理論與形狀記憶 5 2-1 形狀記憶合金 5 2-1-1 形狀記憶效應 5 2-1-2 形狀記憶合金之相轉換 6 2-2 分子動力學理論 6 2-2-1 基本理論與假設 6 2-2-2 系綜觀念 8 2-2-3 分子作用力與勢能函數 8 2-2-4 原子級應力 13 2-2-5 週期性邊界與最小映像法則 13 2-2-6 初始條件設定 15 2-2-7 運動方程式 16 2-2-8 Gear’s 五階預測修正法 16 2-2-9 截斷半徑法與Verlet表列法 18 2-2-10 差排分析參數 19 第三章 Ni-Ti合金之相轉變溫度 30 3-1 原子模型 30 3-2 勢能函數選擇 31 3-3 模擬流程 31 3-4 結果與討論 31 3-4-1 模型的收斂性測試 31 3-4-2 組成比例對相轉變溫度的影響 33 3-4-3 原子分布與晶格排列對相轉變溫度的影響 33 第四章 Ni-Ti合金之形狀記憶效應 51 4-1 模擬流程 51 4-2 結果與討論 52 4-2-1 複合加載對形狀記憶效應的影響 52 4-2-2 CNP參數分析與討論 55 4-2-3 最大剪應力分析與討論 57 4-2-4 滑移向量分析與討論 58 第五章 結論與未來展望 108 5-1 結論 108 5-2 未來展望 109 參考文獻 110 附錄一 113 A系列模型模擬數據 113 B系列模型模擬數據 119 C系列模型模擬數據 129

    [1] L. C. Chang and T. A. Read, "On diffusionless transformation in Au-Cd single crystals containing 47.5 atomic percent cadmium: characteristics of single–interface transformation", Transactions of the Metallurgical Society of Aime, vol. 189, pp. 47, 1952.
    [2] W. J. Buehler, J. V. Gilfrich and R. C. Wiley, "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", Journal of Applied Physics, vol. 34, pp. 1475–1477, 1963.
    [3] W. S. Lai and B. X. Liu, "Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering", Journal of Physics: Condensed Matter, vol. 12, L53-L60, 2000.
    [4] Ken-ichi Saitoh, Tomohiro Sato and Noboru Shinke, "Atomic dynamics and energetics of martensitic transformation in Nickel-Titanium shape memory alloy", Materials Transactions, vol. 47, pp. 743-749, 2006.
    [5] H. Ishida and Y. Hiwatari, "MD simulation of martensitic transformations in TiNi alloys with MEAM", Molecular Simulation, vol. 33, pp. 459-461, 2007.
    [6] Daniel Mutter and Peter Nielaba, "Simulation of structural phase transitions in NiTi", Physical Review B, vol. 82, pp. 224201, 2010.
    [7] Yuan Zhong, Ken Gall and Ting Zhu, "Atomistic study of nanotwins in NiTi shape memory alloys", Journal of Applied Physics, vol. 110, pp. 033532, 2011.
    [8] Yuan Zhong, Ken Gall and Ting Zhu, "Atomistic characterization of pseduoelasticity and shape memory in NiTi nanopillars", Acta Materialia, vol. 60, pp. 6301-6311, 2012.
    [9] Reza Mirzaeifar, Ken Gall, Ting Zhu, Arash Yavari, and Reginald DesRoches, "Structural transformations in NiTi shape memory alloy nanowires", Journal of Applied Physics, vol. 115, pp. 194307, 2014.
    [10] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport properties. IV. the equation of hydrodynamics", Journal of Chemical Physics, vol. 18, pp. 817-823, 1950.
    [11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller and E. Teller, "Equation of state calculations by fast computing machines", Journal Chemical Physics, vol. 21, pp. 1087-1092, 1953.
    [12] M. P. Allen and D. J. Tildesley, "Computer simulation of liquids", Oxford University Press, New York, 1987.
    [13] B. J. Alder and T. E. Wainwright, "Phase transition for a hard sphere system", Journal Chemical Physics, vol. 27, pp. 1208-1209, 1957.
    [14] B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. general method", Journal Chemical Physics, vol. 31, pp. 459-466, 1959.
    [15] L. A. Girifalco and V. G. Weizer, "Application of morse potential function to cubic metals", Physical Review, vol. 114, pp. 687-690, 1959.
    [16] L. Verlet, "Computer experiments on classical fluids. II. equilibrium correlation function", Physical Review, vol. 165, pp. 201-214, 1968.
    [17] B. Quentrec and C. Brot, "New method for searching for molecular dynamics computations", Journal of Computational Physics, vol. 13, pp. 430-432, 1975.
    [18] D. C. Rapaport, "Large-scale molecular dynamics simulation using vector and parallel computers", Computer Physics Reports, vol. 9, pp. 1-53, 1988.
    [19] G. S. Grest, B. Dunweg and K. Kremer, "Vectorized link cell fortran code for molecular dynamics simulations for a large number of particles", Computer Physics Communications, vol. 55, pp. 269-285, 1989.
    [20] R. J. Arsenault and J. R. Beeler, Computer simulation in material science: Asm International, 1988.
    [21] F. Reif, Fundamentals of statistical and thermal physics: McGraw Hill, 1985.
    [22] C. L. Tien and J. H. Lienhard, Statistical thermo dynamics: MeiYa, 1971.
    [23] J. M. Haile, Molecular dynamics simulation: John Wiley & Sons, 1997.
    [24] E. Hernandez, C. Goze, P. Bernier and A. Rubio, "Elastic properties of C and BxCyNz composite nanotubes", Physical Review Letters, vol. 80, pp. 4502, 1998.
    [25] G. C. Maitland and M. Rigby, Intermolecular forces : their origin and determination: Oxford University Press, 1987.
    [26] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge University Press, 1997.
    [27] J. E. Jones, "On the determination of molecular fields. II. from the equation of state of a gas", Proceedings of the Royal Society of London. Series A, vol. 106, pp. 463-477, 1924.
    [28] L. A. Girifalco and V. G. Weizer, "Application of the morse potential function to cubic metals", Physical Review, vol. 114, pp. 687, 1959.
    [29] F. Milstein, "Theoretical strength of a perfect crystal with exponentially attractive and repulsive interatomic interactions", Journal of Applied Physics, vol. 44, pp. 3833-3840, 1973.
    [30] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, vol. 48, pp. 22, 1993.
    [31] V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding Model", Philosophical Magazine A-physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, pp. 321-336, 1989.
    [32] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, "Atomic scale structure of sputtered metal multilayers", Acta Materialia, vol. 49, pp. 4005-4015, 2001.
    [33] N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method", Journal Series A-mechanics and Material Engineering, vol. 39, pp. 606-612, 1996.
    [34] H. Tsuzuki, P. S. Branicio, and J. P. Rino, "Structural characterization of deformed crystals by analysis of common atomic neighborhood," Computer Physics Communications, vol. 177, pp. 518-523, 2007.
    [35] J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, "Surface step effects on nanoindentation," Physical Review Letters, vol. 87, pp. 165507, 2001.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE