| 研究生: |
陳宏志 Chen, Hung-Chih |
|---|---|
| 論文名稱: |
黏彈式原子力顯微鏡應用於液面下細胞表面之機械性質量測 Applications of Viscoelastic Atomic Force Microscope to Examine Mechanical Properties of the Surfaces of Living Cells in Liquid |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 黏彈性質 、原子力顯微鏡 、細胞 、楊氏模數 |
| 外文關鍵詞: | cell, atomic force microscope, viscoelastic, viscoelasticity, Young's modulus, AFM |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為現今有許多細胞表面性質的病變是造成許多疾病的病因,而且當細胞分裂時,細胞表面的性質也會隨著分裂階段的不同而有所改變,因此針對細胞表面從事相關的研究以及檢測便有它的重要性。
本論文利用黏彈式原子力顯微鏡對活體PC12類神經細胞量測其細胞表面的機械性質。黏彈式原子力顯微鏡是以載台振盪帶動探針頭振盪,並以動態壓痕的方式使細胞在量測時能夠表現出其黏彈性質。而在液面下黏彈性材料的動態壓痕彈性模數理論中則以佛格脫固體(Voigt solid)模型來表示細胞的黏彈性質,使理論分析也能夠以黏彈性質來表現。
由實驗可以得到細胞表面形貌、探針頭振盪振幅以及探針頭振盪振幅與相位落後餘弦此三種實驗結果,再將其代入液面下黏彈性材料的動態壓痕彈性模數理論中便能得到其楊氏模數的定量值大小。此外,本論文還利用表面形貌以及探針頭的幾何關係來修正正向接觸投影面積,不但可以去除形貌對楊氏模數的影響,還可以排除量測過程中錯誤的資訊。
最後我們所推得的楊氏模數不論在尺度上還是隨壓深不同而改變的趨勢上皆與正常情況相符,但是其值還是有受到其他表面形貌效應的影響,這說明在本研究中影響楊氏模數的因素並不只有一個。
In this study, we used VE-AFM to examine mechanical properties of PC12 neuron-like cells. Cells displayed their viscoelasticity by the way of dynamic indentations in which the tip of VE-AFM oscillated from the oscillation of the specimen holder. It also displayed viscoelasticity in elastic modulus theory, in which a Voigt solid model was employed, of dynamic indentations for viscoelastic materials in liquid.
We got the experiment data of topography, tip oscillation amplitude, and the cosine of the tip oscillation amplitude and the phase lag, and we got the Young’s modulus after putting the data into the elastic modulus theory. Besides, we employed the relations between topography and the tip geometry to eliminate the effect of topography and exclude errors in experiments.
The Young’s modulus we got was not only in same order but also in same trend in different indentation depth with true situation, but it was still affected by other topographical effects.
[1]M. Radmacher, R. W. Tillmann, 1993, “Imaging Viscoelasticity by Force Modulation with the Atomic Force Microscope”, Biophy. J., 64, 735-742.
[2]B. N. Lucas, J. E. Oliver, 1998, “The Dynamics of Frequency-Specific, Depth-sensing Indentation Testing”, MRS Symp. Proc.; 522, 3-14.
[3]R. B. King, 1987, “Elastic Analysis of Some Punch Problems for A Layered Medium”, Int. J. Solids Structure, 23, 1657-1664.
[4]I. N. Sneddon, 1965, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Engng Sci., 3, 47-57.
[5]W. C. Oliver, G. M. Pharr, 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., 7, 1564-1583.
[6]M. Sato, K. Nagayama, 2000, “Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress”, J. Biomech., 33, 127-135.
[7]C. A. J. Putman, K. O. van der Werf, 1994, “Viscoelasticity of Living Cells Allows High Resolution Imaging by Tapping Mode Atomic Force Microscope”, Biophy. J., 67, 1749-1753.
[8]J. P. Cleaveland, B. Anczykowski, 1998, “Energy Dissipation in Tapping-mode Atomic Force Microscopy”, App. Phy. Lett., 72, 2613-2615.
[9]L. A. Greene, A. S. Tischler, 1976, “Establishment of a Noradrenergic Clonal Line of Rat Adrenal Pheochromocytoma Cells which Respond to Nerve Growth Factor”, Proc. Natl. Acad. Sci. USA., 73, 2424-2428.
[10]B. Darke, C. B. Prater, 1989, “Imaging Crystals, Polymers and Biological Processes in Water with AFM”, Science, 243, 1586-1589.
[11]A. B. Mathur, A. M. Collinsworth, 2001, “Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy”, J. Biomech.; 34, 1545-1553.
[12]E. A-Hassan, W. F. Heinz, 1998, “Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy”, Biophys. J., 74, 1564-1578.
[13]G. Binnig, C. F. Quate, 1986, “Atomic Force Microscope” Phys. Rev. Lett., 56, 930-933.
[14]F. Braet, C. Rotch, 1998, ”Comparison of Fixed and Living Endothelial Cells by Atomic Force Microscopy”, Appl. Phys., 66, 575-578.
[15]H.-J. Butt, E. K. Wolff, 1990, “Imaging Cells with the Atomic Force Microscope”, J. Struct. Biol., 105, 54-61.
[16]L. G. Christian, L. Eric, 1997, “Simultaneous Imaging of the Surface and the Submembraneous Cytoskeleton in Living Cells by Tapping Mode Atomic Force Microscopy”, Life Sci., 320, 637-643.
[17]C. A. J. Putman, K. O. van der Werf, 1992, “Atomic Force Microscope with Integrated Optical Microscope for Biological Application”, Rev. Sci. Instrum., 63, 1914-1917.
[18]C. A. J. Putman, A. M. van Leeuween, 1993, “Atomic Force Microscppy Combined with Confocal Laser Scanning Microscopy: A New Look at Cells”, Bioimaging, 1, 63-70.
[19]C. A. J. Putman, K. O. van der Werf, 1994, “Tapping Mode Atomic Force Microscopy in Liquid”, Appl. Phys. Lett.
[20]David Boal, 2002, “Mechanics of the Cell”, CAMBRIDGE.
[21]E. A. G. Peeters, C. W. J. Oomens, 2005, ” Viscoelastic Properties of Single Attached Cells Under Compression”, J. Biom. Eng., 127, 237-243.
[22]R. M. Hochmuth, H. P. Ting-Beall, 1993, “Viscosity of Passive Human neutrophils undergoing Small Deformations”, Biophys. J., 64, 1596-1601.
[23]U. G. Hofmann, C. Rotsch, 1997, “Investigating the Cytoskeleton of Chicken Cardiocytes with the Atomic Force Microscope”, J. Struc. Biol., 119, 84-91.
[24]J. H. Hoh, C.-A. Schoenenberger, 1994, “Surface Morphology and Mechanical Properties of MDCK Monolayers by Atomic Force Microscopy”, J. Cell Sci., 107, 1105-1114.
[25]H. G. Hansma, J. H. Hoh, 1994, “Biomolecular Imaging with the Atomic Force Microscope”, Annu. Rev. Biophys. Chem., 23, 115-139.
[26]A. B. Mathur, G. A. Truskey, 2000, ”Atomic Force and Total Internal Reflection Fluorescence Microscopy to Study Force Transmission in Endothelial Cells”, Biophy. J., 78, 1725-1735.
[27]H. Miyazaki, K. Hayashi, 1999, “Atomic Force Microscopic Measurement of the Mechanical Properties of Intact Endothelial Cells in Fresh Arteries”, Med. Biol. Eng. Comp., 37, 530-536.
[28]V. Parpura, P. G. Haydon, 1993, “Three-dimensional Imaging of Living Neurons and Glia with the Atomic Force Microscope”, J. Cell Sci., 104, 427-432.
[29]M. Radmacher, R. W. Tillman, 1992,”From Molecules to Cells – Imaging Soft Samples with the AFM”, Science, 257, 1900-1905.
[30]M. Radmacher, M. Fritz, 1995, “Imaging Soft Sample with the Atomic Force Microscope: Gelattin in Water and Propanol”, Biophys. J.,69, 264-270.C. A. J. Putman, K. O.
[31]M. Radmacher, M. Fritz, 1996, “Measuring the viscoelastic Properties of Human Platelets with Atomic Force Microscope”, Biophys. J., 70, 556-567.
[32]M. Radmacher, 1997, ”Measuring the Elastic Properties of Biological Sample with the AFM”, IEEE Eng. Med. Bio., 97, 47-57.
[33]D. Ricci, M. Tedesco, 1997, “Mechanical and Morphological Properties of Living 3T6 Cells Probed via Scanning Force Microscopy”, Micros. Res. Tech., 36, 165-171.
[34]C. Rotsch, F. Braet, 1997, “AFM Imagimg and Elasticity Measurements on Living Rat Liver Macrophages”, Cell Biol. Inte., 21, 685-696.
[35]C. Rotsch, K. Jacobson, 1999, “Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy”, Proc. Nat. Acad. Sci. USA, 96, 91-926.
[36]D. Rugar, P. K. Hansma, 1990, “Atomic Force Microscopy”, Physics Today, 43, 23-30.
[37]S. G. Shroff, D. R. Saner, 1995, “Dymamic Micromechanical Properties of Cultured Rat Atrial Mytocytes Measured by Atomic Force Microscopy”, Ame. J. Physio., 269, 286-292.
[38]N. J. Tao, N. M. Lindsay, 1992, ”Measuring the Microelastic Properties of Biological Materials”, Biophys. J., 63, 1165-1169.
[39]W. Xu, P. J. Mulhern, 1994, “A New Atomic Force microscopy Technique for the Measurement of the Elastic Properties of Biological Materials”, Scanning Microscopy, 8, 499-506.
[40]Q. Zhong, D. Inniss, 1993, “Fractured Polymer/Silica Fiber Studied by Tapping Mode Atomic Force Microscopy”, Surf. Sci. Lett., 290, 688-692.
[41]Y. C. Fung, 1993, “Biomechanics Mechanical Properties of Living Tissues”, Springer-Verlsg.
[42]Y. C. Fung, 2001, ”Introduction to Bioengineering”, World Scientific.
[43]陳冠維,掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測,國立成功大學機械工程學系碩博士班,碩士論文,2003
[44]張嘉峰,應用原子力顯微術於PC12類神經細胞之生物力學研究,國立成功大學微機電系統工程研究所,碩士論文,2006