簡易檢索 / 詳目顯示

研究生: 張哲源
Chang, Che-Yuan
論文名稱: 鈦酸鋇介電陶瓷之成分調整與結構及電容率平坦化的關聯
Compositional modification, structural adjustment, and electric permittivity flattening of BaTiO3 dielectric ceramics
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 258
中文關鍵詞: 介電材料顯微結構晶體結構溫度-電容曲線
外文關鍵詞: Dielectric material, microstructure, crystal structure, temperature dependence of capacitance curve
相關次數: 點閱:118下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究根據過去以鈦酸鋇為基礎之高容介電陶瓷材料所做的深入研究及資料蒐集整合後發現,欲使鈦酸鋇達到高容且同時具備穩定的溫度-電容變化曲線,主要可以藉由改變其組成 (composition) 及其顯微結構 (microstructure) 兩大方向去達成。因此,本研究選擇以Ca2+、Zr4+、Mg2+、Y3+及(Bi0.5Na0.5)TiO3做為添加於鈦酸鋇中的參雜物 (dopants),探討組成改變對於鈦酸鋇結構及介電特性的影響,同時藉由控制製程參數及燒結方法改變顯微結構藉此瞭解顯微結構對於鈦酸鋇介電特性的影響。
    研究結果顯示,額外添加Ba2+於(Ba, Ca)(Ti, Zr)O3可以藉此使Ca2+同時取代鋇位置及鈦位置,藉此調整鈦酸鋇的居里溫度及提升鈦酸鋇於室溫下之介電常數。顯微結構的控制上,透過二階段燒結的燒結方式可以有效的控制(Ba, Ca)(Ti, Zr)O3燒結體的晶粒大小,製備出具高緻密性小晶粒(0.5 μm)之燒結體,且粒徑的縮減對於電容率的平坦化具有正面的幫助。選擇低容忍因子之化合物(Bi0.5Na0.5)TiO3作為參雜物,可以有效地提升鈦酸鋇的居里溫度,並同時具有降低燒結溫度的效果,此外,於BaTiO3-(Bi0.5Na0.5)TiO3系統中加入氧化鎂,亦可以達到電容率平坦化之效果。氧化鎂及氧化釔的添加可以調整鈦酸鋇的居里溫度及電容率,使其可以符合高溫介電陶瓷材料之規範(X8R),且綜合氧化鎂及氧化釔共添加之系統其顯微結構的變化、晶體結構的變化、溫度-電容曲線的變化及擴散實驗的結果,發現Mg2+在形成殼核結構上扮演了相當重要且主導整個顯微結構及介電特性變化的角色。

    The effects of Ca2+, Zr4+, Mg2+, Y3+ and (Bi0.5Na0.5)TiO3 doping on the microstructure, crystal structure and dielectric properties in BaTiO3 were investigated. The XRD and Raman results confirm the crystalline phase of BCTZ and BCTZ with excess Ba2+ powders are both tetragonal phases and without any other second phases. The results also show that Ca2+ ions can be pushed from Ba-site to Ti-site via the addition of excess Ba2+. SEM micrographs indicate that a fine-grain microstructure of both BCTZ and BCTZ with excess Ba2+ can be obtained using a two-step sintering method. The average grain size of BCTZ was around 0.25 μm, and the average grain sizes of two BCTZ samples with extra addition of Ba2+ were 0.5 μm and 0.3 μm, respectively. The fine-grain samples were obtained by two-step sintering and had a higher Curie temperature and flatter temperature coefficient of capacitance (TCC) curves.
    The single phase of BaTiO3-(Bi0.5Na0.5)TiO3 powders can be synthesized at 800 oC for 3 h. The tetragonality and dielectric constant decreased as the BNT concentration increased. The Curie temperature increased with the BNT concentration increased.The sintering temperature of BaTiO3-(Bi0.5Na0.5)TiO3 decreased when MgO concentration increased.The flattened TCC curve of BaTiO3-(Bi0.5Na0.5)TiO3 can be obtained when the MgO concentration increased.
    The TEM micrographs show that, core-shell structure can be obtained in the BaTiO3 ceramics co-doped with MgO and Y2O3. In addition, the addition of MgO enhances sintering shrinkage and inhibits the grain growth of BaTiO3 ceramics. Moreover, the addition of 1.0 mol% Y2O3 can promote sintering shrinkage and suppress the grain growth of BaTiO3 ceramics. However, the sintering shrinkage is suppressed when the amount of Y2O3 is increased to 3.0 mol%. The diffusion depths of Mg2+ and Y3+ are obtained by high-resolution transmission electron microscopy. The results indicated that Y3+ dissolved in BaTiO3 lattice with 5~10 nm depths inside the grain whereas Mg2+ tended to stay at the grain surface rather than being incorporated into BaTiO3. It is considered that Mg2+ plays an important role as a shell maker in the formation of core-shell structure.

    摘要 III Abstract IV 致謝 VI 圖目錄 XI 表目錄 XXII 第一章 緒論 1 1-1 研究背景 1 1-2 研究方法 2 第二章 理論基礎及前人研究 3 2-1 介電陶瓷 3 2-1-1 介電性質 3 2-1-2鈦酸鋇之晶體結構及其性質 5 2-1-3鋇鈦比對於鈦酸鋇之影響 9 2-1-4 鈦酸鋇之晶粒大小及表面效應 16 2-2 離子置換對於鈦酸鋇性質之影響 21 2-2-1 調整鈦酸鋇之相轉換溫度 22 2-2-2 鈦酸鋇電容率平坦化之方法 25 2-3 Ca2+及Zr4+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 32 2-3-1 Ca2+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 32 2-3-2 Zr4+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 37 2-3-3額外添加碳酸鋇於(Ba,Ca)(Ti,Zr)O3之反應機制 42 2-4 (Bi0.5Na0.5)TiO3 的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 44 2-5 Mg2+及Y3+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 51 2-5-1 Mg2+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 51 2-5-2 Y3+的添加對於鈦酸鋇晶體結構、顯微結構及介電特性之影響 55 2-6 燒結理論 61 2-6-1 燒結基本原理與機制 61 2-6-2 液相燒結原理及抑制晶粒成長 65 2-6-3 二階段燒結法 68 2-7 X光吸收光譜理論 69 2-7-1 X光吸收近緣結構 (X-ray absorption near edge structure, XANES) 72 2-7-2 延伸X光細微結構 (Extended X-ray absorption fine structure, EXAFS) 73 2-7-3同步輻射之X光吸收光譜於元素取代上之應用 75 第三章 實驗方法及步驟 83 3-1 起始原料 83 3-2 粉末及陶瓷體製備 83 3-2-1以Ca2+及Zr4+添加於鈦酸鋇粉末之製備 83 3-2-2 (Bi0.5Na0.5)TiO3添加於鈦酸鋇粉末之製備 84 3-2-3 Mg2+及Y3+添加於鈦酸鋇粉末之製備 88 3-2-4 粉末之熱差/熱重分析 89 3-2-5 陶瓷體製備及燒結條件試驗 89 3-3 材料特性及性質分析 92 3-3-1 陶瓷體密度量測 92 3-3-2 X光粉末繞射分析及晶格常數計算 92 3-3-3 Rietveld 方法精算晶格常數 93 3-3-4 Raman光譜分析 95 3-3-5 X光螢光分析 95 3-3-6 X光吸收光譜 99 3-3-7 掃描式電子顯微鏡 99 3-3-8 穿透視電子顯微鏡 100 3-3-9 晶粒大小與分佈計算 100 3-3-10 陶瓷體介電常數及電容變化率量測 104 第四章 額外添加Ba2+於(Ba,Ca)(Ti,Zr)O3系統的顯微結構、晶體結構及介電性質 105 4-1 前言 105 4-2 結果與討論 107 4-2-1 粉末合成、粉末成份定量分析及結晶相分析 107 4-2-2 粉末之微結構觀察 113 4-2-3 晶格常數分析及理論密度計算 113 4-2-4燒結收縮量測及顯微結構分析 118 4-2-5 燒結體之介電常數及溫度-電容曲線 126 4-2-6 同步輻射X光吸收光譜分析 127 4-3 結論 133 第五章 二階段燒結法製備微晶粒 (Ba,Ca)(Ti,Zr)O3 系統的顯微結構與介電性質 135 5-1 前言 135 5-2 結果與討論 135 5-2-1 粉末合成、粉末成份定量分析及結晶相分析 135 5-2-2 粉末之微結構觀察 140 5-2-3 晶格常數分析及理論密度計算 144 5-2-4 Rietveld方法晶體結構分析 144 5-2-5 燒結收縮量測與二階段燒結之參數設計 148 5-2-6 燒結體之顯微結構分析與密度量測 154 5-2-7 燒結體之介電常數及溫度-電容曲線 160 5-3 結論 167 第六章 BaTiO3-(Bi0.5Na0.5)TiO3 系統之晶體結構、顯微結構與介電性質之影響 168 6-1 前言 168 6-2 結果與討論 168 6-2-2 晶格常數計算及Rietveld方法晶體結構分析 173 6-2-3 燒結收縮量測及微結構分析 182 6-2-4 燒結體之介電常數及溫度-電容曲線 186 6-2-5 氧化鎂添加對BT-BNT燒結收縮及顯微結構的影響 194 6-2-6 氧化鎂添加對BT-BNT介電性質的影響 203 6-3 結論 206 第七章 氧化鎂及氧化釔添加對鈦酸鋇晶體結構、顯微結構及介電性質之影響 207 7-1 前言 207 7-2 結果與討論 207 7-2-1 粉末合成、結晶相分析及晶格常數分析 207 7-2-2 燒結收縮量測及顯微結構分析 215 7-2-3 燒結體之介電常數及溫度-電容曲線 232 7-2-4 氧化鎂及氧化釔於鈦酸鋇中的擴散實驗 236 7-3 結論 246 第八章 結論 247 參考文獻 249

    1. K. Hurlbut, Manual of Mineralogy, 21st Ed., John Wiley and Sons, Inc., New York, 1993.
    2. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 1976.
    3. Kittel, Introduction to Solid Sate Physics, 7th Ed., John Wiley and Sons, Inc., New York, 1996.
    4. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 2003.
    5. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York, Chapter 18.1 (1979).
    6. G. Shirane, F. Jona, and R. Pepinsky, “Some aspects of ferroelectricity,” Proc. I.R.E., 42, 1738-1793 (1955).
    7. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 68 [7], 372-76 (1985).
    8. S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90 [8], 2589-94 (2007).
    9. G. V. Lewis, C. R. A. Catlow, and R. E. W. Casselton, “PTCR Effect in BaTiO3,” J. Am. Ceram. Soc., 68 [10], 555-58 (1985).
    10. M. T. Buscaglia, V. Buscaglia, M. Vivinai, and P. Nanni, “Atomistic Simulation of Dopant Incorporation in Barium Titanate,” J. Am. Ceram. Soc., 84 [2], 376-84 (2001).
    11. K. M. Hardtl and R. Wernicke, Solid State Commun., 10, 153 (1972).
    12. S. Lee, Z. K. Liu, M. H. Kim, and C. A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3,” J. Appl. Phys., 101, 054119 (2007).
    13. R. C. Garvie, ”Stabilization of the Tetragonal Structure in Zirconia Microcrystal,” J. Phys. Chem., 82, 218-224 (1978).
    14. P. Boch and J. C. Niepce, Ceramic Materials : Processes, Properties and Applications, ISTE, London, 2007.
    15. K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of the Crystal Structure on Particle Size in Barium Titanate,” J. Am. Ceram. Soc., 72 [8], 1555-1558 (1989).
    16. D. Begg, E. R. Vance, and J. Nowotny, “Effect of Particle Size on the Room-Tmperature Crystal Structure of Barium Titanate,” J. Am. Ceram. Soc., 77, [12], 3186-3192 (1994).
    17. G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics,” J. Appl. Phys., 58 [4] 1619-1625 (1985).
    18. 加藤成、中村友幸、武藤和夫、世林武久、佐野晴信,Murata Manufacturing CO., LTD.,中華民國專利 I314922,2005.
    19. 世林武久,石原雅之,中村友幸,佐野晴信,Murata Manufacturing CO., LTD.,中華民國專利 I311550,2006.
    20. 竹田敏和,和田信之,高橋夕香子,Murata Manufacturing CO., LTD.,中華民國專利 I296809,2005.
    21. 伊東和重,佐藤陽,TDK CO., LTD.,中華民國專利 I275582,2005.
    22. 渡邊康夫,遠藤健太,高原彌,TDK CO., LTD.,中華民國專利 I267497,2004.
    23. 時田浩司,英樹,相澤周二,堀口忠彥,Toho Titanium CO., LTD.,中華民國專利 I240174,2001.
    24. 鈴木祥一郎,Murata Manufacturing CO., LTD.,中華民國專利 I288126,2005.
    25. 增田健,TDK CO., LTD.,中華民國專利 M290885,2000.
    26. 渡邊康夫,遠藤健太,高原彌,TDK CO., LTD.,中華民國專利 I267497,2004.
    27. 川村知榮,棚田淳,茶園廣一,Taiyo Ynden CO., LTD.,中華民國專利 I304056,2004.
    28. 岩崎健一,福田大輔,西垣政浩,松原聖,神垣耕世,Kyocera CO., LTD,中華民國專利 I268523,2005.
    29. Y. Li, X. Yao, and L. Zhang, ”High permittivity neodymium-doped barium titanate sintered in pure nitrogen,” Ceram. Int., 30, 1325-1328 (2004).
    30. S. Wang, S. Zhang, X. Zhou, B. Li, and Z. Chen, ”Investigation on dielectric properties of BaTiO3 co-doped with Ni and Nb,“ Mater. Lett. 60, 909–911, (2005).
    31. M. Du, Y. Li, Y. Yuan, S. Zhang, and B. Tang, “A novel approach to BaTiO3-based X8R ceramics by calcium borosilicate glass ceramic doping,“ J. Eelctron. Mater., 36, [10], 1389-1394, (2007).
    32. B. Tang, S. Zhang, X. Zhou, and Y. Yuan, ”Doping effects of Mn2+ on the dielectric properties of glass-doped BaTiO3-based X8R materials,” J. Mater. Sci: Mater Electron, 18, 541–545 (2007).
    33. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, ”Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jpn. J. Appl. Phys., 36, [10B], 6999–7004, (2007).
    34. W. H. Lee, and C. Y. Su “Improvement in the Temperature Stability of a BaTiO3-Based Multilayer Ceramic Capacitor by Constrained Sintering,” J. Am. Ceram. Soc., 10, [90], 3345–3348, (2007).
    35. B. Li, S. Zhang, X. Zhou, S. Wang, and Zhu Chen, “Preparation of BaTiO3-based ceramics by nanocomposite doping process,” J. Mater. Sci., 42, 2090–2096, (2007).
    36. B. Tang, S. Zhang, X. Zhou, D. Wang, and Y. Yuan, ”Regression analysis for complex doping of X8R ceramics based on uniform design,” J. Electron. Mater, 36, [10], 1383-1388, (2007).
    37. B. Tang, S. R. Zhang, and X. H. Zhang, “Effect of Mn2+ doping on the temperature coefficient of capacitance of TiO2 / SiO2 - doped BaTiO3 ceramics,” Inorg. Mater., 44, [6], 669–672, (2008).
    38. J. Ravez, R. von der MuÈhll, A. Simon and P. Sciau, ’’A perovskite ceramic of composition Ba0.92Ca0.08(Ti0.75Zr0.25)O3 with both ferroelectric and relaxor properties,“ J. Mater. Chem., 9, 2829-2832, (1999).
    39. J. Ravez, Ce´dric Broustera and A. Simon, “Lead-free ferroelectric relaxor ceramics in the BaTiO3–BaZrO3–CaTiO3 system,” J. Mater. Chem., 9, 1609-1613, (1999).
    40. Hennings and A. Schnell, ’’Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics,“ J. Am. Ceram. Soc., 65, [11], 539-544, (1982).
    41. M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, and S. Wada, “Size effect on the crystal structure of barium titanate nanoparticles,” J. Appl. Phys., 98, 014313-1-014313-8, (2005).
    42. V. Petrovsky, A. Manohar, and F. Dogan, “Dielectric constant of particles determined by impedance spectroscopy,” J. Appl. Phys., 100, 014102-1-014102-4, (2006).
    43. K. R. Chowdary, and E. C. Subbarao, “Liquid phase sintering BaTiO3,” Ferroelectric, 689-692, 1981.
    44. J. M. Haussonne, G. Desgardin, P. Bajolet, and B. Raveau, ’’Barium titanate perovskite sintered with lithium fluoride,“ J. Am. Ceram. Soc., 66, [11], 801-807, (1983).
    45. A. Toline, and J. B. Blum, “Effect of Ba : Ti ratio on densification of LiF-fluxed BaTiO3,” J. Am. Ceram. Soc., 68, [11], C292-C294, (1985).
    46. M. McSweeney, K.Zuk, and D. Williamson, Ceramic transactions, Ceramic powder science 11B, 1156-1166, 1988.
    47. J. A. Basmajian, and R. C. DeVries, “Phase equilibrium in the system BaTiO3-SrTiO3,” J. Am. Ceram. Soc., 40, [11], 373-376, (1959).
    48. M. McQuarrie, “Structure behavior in the system (Ba, Ca, Sr)TiO3 and it’s relation to certain dielectric characteristics,” J. Am. Ceram. Soc., 32, [12], 444-449, (1955).
    49. R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger and S. E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics,” Jap. J. Appl. Phys., 40, 5999-6002, (2001).
    50. S. Lee, and C. A. Randall, “A modified Vegard's law for multisite occupancy of Ca in BaTiO3-CaTiO3 solid solutions,” Appl. Phys. Lett., 92, 111904-1 - 11904-3, (2008).
    51. C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty and W. Huebner,” Structure property relationships in core-shell BaTiO3-LiF ceramics,” J. Mater. Res., Vol. 8, No. 4, pp. 871-879 (1993).
    52. T. Hiramatsu, T. Tamura, N Wada, H. Tamura, and Y. Sakabe, “Effects of grain boundary on dielectric properties in fine-grain BaTiO3 ceramics”
    53. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate.” J. Am. Ceram. Soc., 49 [1] 33-36 (1966).
    54. K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis” Jap. J. Appl. Phys., 48 [9] 09KC05-09KC05-4 (2009).
    55. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jap. J. Appl. Phys., 46 [10B] 6999-7004 (2007).
    56. Q. Feng, and C. J. McConville, “Weak-Beam Dark-Field Microscopy of Complex Stress States in X7R-Type BaTiO3 Dielectric Core–Shell Structures,” J. Am. Ceram. Soc., 87 [10] 1945-1951 (2004).
    57. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics,” J. Appl. Phys., 58 [4] 1619-1625 (1985).
    58. M. H. Frey, and D. A. Payne, “Grain-size effect on structure and phase transformations for barium titanate,” Ame. Phys. Soc., 54 [5] 3158-3168 (1996).
    59. D. Hennings and A. Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics, ” J. Am. Ceram. Soc., 65 [11] 539-544 (1982).
    60. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imadeda, Y. Takahash, H. Ohsato, and T. Okuda, “The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3,” Jpn. J. Appl. Phys., 36, 5954 - 5957, (1997).
    61. C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong, and K. H. Hur, “Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC,” J. Eur. Ceram. Soc., 28, 1213 - 1219, (2008).
    62. C. S. Chen, C. C. Chou, W. C. Yang, and I. N. Lin, “TEM microstructure of X7R type base-metal-electroded BaTiO3 capacitor materials co-doped with MgO/Y2O3 additives,” Ferroelectrics, 332, 41 - 44, (2006).
    63. J. S. Park, and Y. H. Han, “Preparation of MgO-coated BaTiO3 particles through a surface-induced precipitation method,” Ceram. Int., 32, 673 - 677, (2006).
    64. M. McQuarrie, and F. W. Behnke, “Structure and dielectric studies in system (BaCa)(TiZr)O3,” J. Am. Ceram. Soc., 37, [11], 539-543, (1954).
    65. J. A. Basmajian, and R. DcVries, “Phase Equilibria in the System BaTiO3–SrTiO3,” J. Am. Ceram. Soc., 40, [11], 373-376, (1957).
    66. Y. Sakabe, N. Wada, T. Hiramatsu and T. Tonogaki, “Dielectric Properties of Fine-Grained BaTiO3 Ceramics Doped with CaO,” Jpn. J. Appl. Phys., 41, 6922-6925, (2002).
    67. P. S. R. Krishna, D. Pandey, V. S. Tiwari, R. Chakravarthy, and B. A. Dasannacharya, “Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate,” Appl. Phys. Lett., 62, [3], 231-233, (1992).
    68. X. G. Tang, and L. W. Chan, “Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics,” J. Appl. Phys., 97, 034109-1-034109-6, (2005).
    69. L. Chen, L. Li, X. Wang, Z. Tian, and Z. Gui, “The study of Ca-doped BCTZ ceramics sintered in reducing atmosphere,” J. Electroceram., (2007).
    70. Han,J. B. Appleby, and D. M. Smyth, “Calcium as an acceptor impurity in BaTiO3,” J. Am. Ceram. Soc., 70, [2], 96-100, (1987).
    71. G. Park, T.S. Oh, and Y. H. Kim, “Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics,” J. Mater. Sci., 27, 5713-5719, (1992).
    72. L. Zhang, O. P. Thakur, A. Feteira, G. M. Keith, A. G. Mould, D. C. Sinclair, and A. R. West, “Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics,” Appl. Phys. Lett., 90, 142914-1-142914-3, (2007).
    73. S. Lee, RW. H. Woodford, and C. A. Randall, “Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites,” Appl. Phys. Lett., 92, 201909-1-201909-3, (2008).
    74. S. Lee, and C. A. Randall, “A modified Vegard's law for multisite occupancy of Ca in BaTiO3-CaTiO3 solid solutions,” Appl. Phys. Lett., 92, 111904-1-11904-3, (2008).
    75. S. M. Neirman, “The curie point temperature of BaTiZrO3 solid solution,” J. Mater. Sci., 23, 3973-3980, (1988).
    76. P. S. Dobal, A. Dixit, and R. S. Katiyar, “Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system,” J. Appl. Phys., 89, [12], 8085-8091, (2001).
    77. B. Tang, S. R. Zhang, Y. Yuan, X. H. Zhou, and Y. S. Liang, “Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics,” Sci. China Ser. E-Tech. Sci., 51, [9], 1451-1456, (2008).
    78. M. J. Pan, and C. A. Randall, “A brief introduction to ceramic capacitors,” IEEE Electrical insulation magazine, 26, [3], 44-50, (2010).
    79. S. Lee, R. D. Levi, W. Qu, S. C. Lee, and C. A. Randall, “Bang-gap nonlinearity in perovskite structured solid solution,” Appl. Phys. Lett., 107, 023523-1-023523-6 (2010).
    80. T. R. Armstrong, L. E. Morgens, A. K. Maurice, a n d R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Cerum. Soc., 72 [4] 605-11 (1989).
    81. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, “Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1−x)O3 (0 ≤ x ≤ 0.12) ceramics,” Scripta Materialia, 61 [1] 68–71 (2009).
    82. 謝宗諭,額外添加Ba2+ 於 (Ba,Ca)(Ti,Zr)O3 系統的顯微結構、晶體結構及介電性質,國立成功大學資源工程研究所碩士論文,民國九十九年。
    83. M. S. Yoon, and S. C. Ur, “Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3–CaTiO3 composites,” Ceram. Int., 34 [8] 1941-1948 (2008).
    84. B. Jaffe, W. R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics, Academic, Press, London (1971).
    85. P. S. Dobal, A. Dixit, and R. S. Katiyar, “Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system,” J. Appl. Phys., 89 [12] 8085-8091 (2001).
    86. L. Zhang, O. P. Thakur, A. Feteira, G. M. Keith, A. G. Mould, D. C. Sinclair, and A. R. West, “Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics,” Appl. Phys. Lett., 90 [14] 142914 (2007).
    87. T. T. Fang, and J. T. Shuei, “Experimental assessment of the inhibition of reduction of Ca2+ - doped barium titanate in a reducing atmosphere,” J. Mater. Res., 14 [5] 1910-1915 (1999).
    88. W. Kwestroo, and H. A. M. Paring, “The Systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc., 42 [6] 292–299 (1959).
    89. H. M. Chan, M. P. Harmer, M. Lal, and D. M. Smyth, “Calcium site occupancy in BaTiO3,” Mater. Res. Soc. Symp. Proc., 31, 345-350 (1984).
    90. D. F. K. Hennings and H. Schreinemacher, “Ca-acceptors in dielectric ceramics sintered in reducive atmospheres,” J. Eur. Ceram. Soc., 15 [8] 795-800 (1995).
    91. S. W. Zhang, H. Zhang, B. P. Zhang, and G. Zhao, “Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere,” J. Eur. Ceram. Soc., 29 [15] 3235–3242 (2009).
    92. R. E. Eitel, C. A. Randall, T. R. Shrout, and P. W. Rehrig, “New high temperature Morphotropic phase boundary piezoelectric based on Bi(Me)O3-PbTiO3 ceramics,” Jpn. J. Appl. Phys., 40, 5999-6002, 2001.
    93. B. Tang, S. R. Zhang, X. H. Zhou, Y. Yuan and L. B. Yang,“Preparation and modification of high Curie point BaTiO3-based X9R ceramics,” J. Electroceram, 25, 93–97, 2010.
    94. L. X. Li, Y. M. Han, P. Zhang, C. Ming and X. Wei, “Synthesis and characterization of BaTiO3-based X9R ceramics,” J. Mater. Sci., 44, 5563–5568, 2009.
    95. Y. Yuan, S. R. Zhang, X. H. Zhou, B. Tang and B. Li, “High-temperature capacitor materials based on modified BaTiO3,” J. E. Mater., 38, 5, 2009.
    96. H. D. Li, C. D. Feng and W. L. Yao, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition,” Materials Letters, 58, 1194– 1198, 2004.
    97. Y. Yuan, M. Du, S. Zhang and Z. Pei, “Effects of BiNbO4 on the microstructure and dielectric properties of BaTiO3-based ceramics,” J. Mater. Sci., 20, 157–162, 2009.
    98. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3,” Jpn. J. Appl. Phys., 43, 2004, 5373-5377.
    99. W. C. Yang, C. T. Hu, I. N. Lin, “Effect of Y2O3/MgO Co-doping on the Electrical Properties of Base-Metal-Electroded BaTiO3 Materials,” J. Euro. Ceram. Soc., 24, 2004, 1479-1483.
    100. H. Hwang, S. K. Choi, and Y. H. Han, “Dielectric Properties of BaTiO3 Codoped with Er2O3 and MgO,” Jpn. J. Appl. Phys., 40, 2001.
    101. F. A. Kroger and H. J. Vink, “Solid State Physics.” eds. F. Seitz and D. Turnbull, Academic Press, New York, 1956.
    102. R. J. Brook, High Tech. Ceramics: Proceedings of The World Congress on High Tech Ceramics, Ed. By P. Vincenzini, Amsterdam, 757-761, 1987.
    103. T. Buscaglia, V. Buscaglia, and M. Viviani, “Atomistic Simulation of Dopant Incorporation in Barium Titanate,” J. Am. Ceram. Soc., 84 [2], 376-84, 2001.
    104. G. V. Lewis and C. R. A. Catlow, “PTCR Effect in BaTiO3,” J . Am. Ceram. Soc., 68 [l0], 555-58, 1985.
    105. T. Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” J. Am. Ceram. Soc., 83 [1], 107-12, 2000.
    106. S. T. Bae, D. K. Yim, and K. S. Hong, “Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO-Doped BaTiO3,” J. Appl. Ceram. Technol., 679-686, 2009.
    107. J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics.” J. Am. Ceram. Soc., 82 [5], 1345-48, 1999.
    108. Y. H. Song, J. H. Hwang and Y. H. Han, “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3,” Jpn. J. of Appl. Phys., 44, 2005, 1310-1313.
    109. J. H. Kim, S. H. Yoon, and Y. H. Han, “Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3,” J. Euro. Ceram. Soc., 2007, 1113-1116.
    110. H. Lin, H. Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3, ” Materials Science and Engineering A335, 2002, 101-108.
    111. G. V. Lewis and C. R. A. Catlow, “PTCR Effect in BaTiO3,” J . Am. Ceram. Soc., 68 [l0], 555-58, 1985.
    112. F. Ashby, “A First Report On Sintering Diagrams,” Acta Metal., 22, 275-289, 1974.
    113. R. L. Coble, “Sintering Crystalline Solids : Ⅱ Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, 1961.
    114. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., 225, 1996.
    115. Cheng H-F et al. ibid, 1993,76 : 827
    116. Hennings D F K et al. ibid, 1987, 70 :23
    117. W. Chen, and X. H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth,” NATURE, 404 168-171 (2000).
    118. X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, and L. T. Li, “Two-Step Sintering of Ceramics with Constant Grain-Size, II : BaTiO3 and Ni–Cu–Zn Ferrite,” J. Am. Ceram. Soc., 89 [2] 438–443 (2006).
    119. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, “Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder,” Jap. J. Appl. Phys., 46 [4] L97–L98 (2007).
    120. F. J. T. Lin, and L. C. D. Jonghe, “Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technique,” J. Am. Ceram. Soc., 80 [9] 2269–2277 (1997)
    121. 王志仁,微晶粒氧化鋁陶瓷體之製備與機械性質,國立成功大學資源工程研究所博士論文,民國九十七年。
    122. Y. I. Lee, and Y. W. Kim, “Effect of processing on densification of nanostructured SiC ceramics fabricated by two-step sintering,” J. Mater. Sci., 39 [11] 3801 – 3803 (2004).
    123. Y. Iwasawa, X-ray absorption fine structure for catalysts and surface, World Scientific, Singapore, 1996.
    124. Y. Mizuno, K. Morita, T. Hagiwara, H. Kishi, K. Ohunma and H. Ohsato, “Relationship between Microstructural Evolution and Electrical Properties in Ba(Ti, Zr)O3-Based Materials for Ni-MLCC,” J. J. Appl. Phys., 43, [9B], 6640-6644, (2004).
    125. R. Yimnirun, J. Tangsritrakul, S. Rujirawat, and S. Limpijumnong, “Identification of Mn Site in BaTiO3 by Synchrotron X-Ray Absorption Spectroscopy Measurements,” Ferroelectrics, 381, 130-143, 2009.
    126. I. Frenkel, M. H. Frey, and D. A. Payne, “XAFS analysis of particle size effect on local structure in BaTiO3,” J. Synchrotron Rad., 6, 515-517, (1999).
    127. Tanaka, T. Mizoguchi, and T. Yamamoto, “XANES and ELNES in ceramic science,” J. Am. Ceram. Soc. 88, [8], 2013-2029 (2005).
    128. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. Thesis, The Pennsylvania State University, U. S. A., 1990.
    129. Cullity, B. D. & Stock, S. R., Elements of X-ray Diffraction 3rd edition, Prentice-Hall Inc., New Jersey, 2001.
    130. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystal., 22, 151, 1967.
    131. M. C. Chang, and S. C. Yu, “Raman study for (Ba1−xCax)TiO3 and Ba(Ti1−yCay)O3 crystalline ceramics,” J. Mater. Sci. Letters, 19 [15] 1323-1325 (2000).
    132. F. Moura, A. Z. Simões, B. D. Stojanovic, M. A. Zaghete, E. Longo, and J. A. Varela, “Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method,” J. Alloy. Compounds, 462 [1-2] 129-134 (2008).
    133. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, and T. Tsurumi, “Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics,” Jap. J. Appl. Phys., 47 [9] 7607–7611 (2008).
    134. L. Wu, M. C. Chure, K. K. Wu, W. C. Chang, M. J. Yang, W. K. Liu, and M. J. Wu, “Dielectric properties of barium titanate ceramics with different materials powder size,” Ceram. Intern., 35[3], 957–960, 2009.
    135. S. W. Kwon, and D. H. Yoon, “Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment,“J. Eur. Ceram. Soc., 27[1], 247–252, 2007.

    無法下載圖示 校內:2018-06-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE