簡易檢索 / 詳目顯示

研究生: 李昱廷
Li, Yu-Ting
論文名稱: 發展應用於神經介面之無線生醫微系統
Development of wireless biomicrosystem for neural interfacing applications
指導教授: 陳家進
Chen, Jia-Jin Jason
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 42
中文關鍵詞: 雙向無線傳輸阻抗量測植入式生醫微系統神經義肢
外文關鍵詞: Biomicrosystem, Impedance measurement, Neural prostheses., Bi-directional Wireless Transmission
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要發展用於周邊神經系統感測與刺激的植入式無線生醫微系統,外部模組主要藉由高效率的Class-E 放大器與振幅移鍵控 (ASK) 調變技術將電源與指令傳送到植入式模組內,擷取的訊號經過取樣及類比數位轉換後並透過負載移鍵控 (LSK) 的方式將此數位訊號傳送到外部模組。透過外部模組的傳輸線圈,外部模組接收的調變訊號會經過解調變及濾波而形成一串列的二進位訊號,最後透過LabVIEW所設計的使用者介面將此擷取的訊號加以顯示。
    此雙向無線傳輸首先藉由可接收外部模組傳送來的刺激指令參數 (振幅、工作週期、頻率) 與感測指令參數(接收通道、解析度、取樣頻率)的刺激感測系統來加以驗證,在感測的驗證方面,此系統被用於擷取坐骨神經的神經訊號,之後,此雙向傳輸系統被用於量測環型電極與周邊神經之間的阻抗,在體外模擬的實驗中,利用了我們所設計的阻抗量測系統與商業用的LCR量測儀來對電極表面的阻抗加以量測,實驗結果表示血漿中蛋白質的逐漸沉澱則造成了此表面阻抗的上升,在動物實驗方面,此電極被植入在老鼠背部的皮膚層跟肌肉層之間並用於觀察電極與組織間的阻抗變化,此系統經過生物相容性的包裝後,將可應用在各種的神經擷取與刺激的研究上。

    This study aims to develop an implantable wireless biomicrosystem for sensing and stimulating peripheral neural system through inductive link. Power and command were transmitted into implantable module by using high efficient class-E power transmitter and amplitude-shift keying (ASK) modulation technique. The measured signals were sampled and converted into digital signal which can be transmitted outwards through the same radio frequency (RF) link by using the load shift key (LSK) modulation method. From the transceiver coil of external module, the received wave was demodulated and filtered out as the serial binary data which were displayed in a graphics user interface (GUI) designed in LabVIEW.
    The bi-directional wireless transmission protocol was first verified in a microstimulation/sensing system which received commands for adjusting the waveform parameters (amplitude, pulse width, frequency) and sensing parameters (channels, resolution and sampling rate) from the external controller. For validation purpose, the electroneurogram of sciatic nerve was recorded. The bi-directional transmission schemes were later applied for measuring the electrode-tissue contact impedance between nerve cuff electrodes and peripheral nerves. For in-vitro test, the increase in impedance was mainly due to the gradual adhesion of protein of blood plasma to microelectrode surface. The impedance measurements of our designed module were comparable to those obtained from the commercial LCR meter. For in-vivo monitoring the electrode-tissue impedance, the microelectrode was implanted between the skin and muscle of Wistar rat’s dorsum. Current system can be extended for various neural sensing and stimulation studies after biocompatible package.

    中文摘要 I Abstract II Contents III List of Figures V List of Tables VII Chapter 1 Introduction 1 1.1 Applications of wireless implantable biomicrosystem in neural prostheses 1 1.2 Applications of wireless implantable biomicrosystem in biosensing 2 1.3 Introduction to nerve cuff microelectrode 5 1.4 Motivation and the aims of this study 7 Chapter 2 Material and Methods 8 2.1 Overall structure of wireless implantable biomicrosystem 8 2.2 Inward transmission of power and commands 10 2.2.1 The commands setting formats 10 2.2.2 Internal power and command recovery unit 11 2.3 Outward transmission of sensing data 11 2.4 Validation of Bi-directional Wireless Transmission 12 2.4.1 Data acquisition system 12 2.4.2 Implanted microstimulator 13 2.5 The implantable wireless module for impedance measurement 15 2.5.1 Principle of impedance measurement 15 2.5.2 The impedance measurement circuit 18 2.6 Experimental setup 20 2.6.1 Fabrication of nerve cuff microelectrode 20 2.6.2 In vitro validation of impedance measurement 21 2.6.3 In-vivo measurement of electrode-tissue impedance 22 Chapter 3 Results 24 3.1 Specifications of implantable wireless module 24 3.1.1 The overall system 24 3.1.2 The graphical user interface for inward transmission 28 3.1.3 Outward transmission of sensing data 29 3.2 Validation and performance wireless biomicrosystem 31 3.3 Measurement of electrode-tissue impedance 33 3.3.1 In-vitro validation of impedance measurement 33 3.3.2 In-vivo measurement of electrode-tissue impedance 35 Chapter 4 Discussion and Conclusion 37 Reference 40

    [1] C. W. Peng, J. J. Chen, C. K. Liang, S. C. Chen, C. C. K. Lin, K. P. Lin, “ High frequency block of selected axons using an implantable microstimulator. ” J Neurosci Methods. 134(1):81-90, 2004
    [2] W. C. Groat, “Central nervous system control of micturition,” In: O'Donnell P. Urinary incontinence. Mosby, St Louis, 1997.
    [3] B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle ,” IEEE Trans. Biomed. Eng., vol. 45, pp. 463-475, 1998
    [4] G.. E. Loeb, F. J. R. Richmond, “BION™ Implants for Therapeutic and Functional Electrical Stimulation,” Chapter in Neural Prosthesis for Restoration of Sensory and Motor Function, JK Chapin and KA Moxon, CRC Press, Boca Raton, pp. 75-99, 2000.
    [5] J. Singh, R. A. Peck and G. E. Loeb, “Development of BIONTM technology for functional electrical stimulation: hermetic packaging,” IEEE Int. Conf. Eng. Medicine and Biology Society, vol. 2, pp. 1313-1316, 2001.
    [6] E. Petros, M. Mileusnic, “BION2: Next Generation of Implant for Functional Electrical Stimulation,” Proc. IV World Conference of Biomechanics, 2002.
    [7] C. K. Liang, J. J. , Chen, C L. Cheng, C. L. Chung, C.L. C. C. Wang, “An Implantable bi-directional wireless transmission system for transcutaneous recording of biological signal, “ Physiol. Meas. 26:83–97, 2005
    [8] T. Akin, K. Najafi and R. M. Bradley, “A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 109-118, 1998.
    [9] Z. Hamici, R. Itti and J. Champier, “A high-efficiency biotelemetry system for implanted electronic device,” IEEE Trans. EMBC and CMBEC, pp. 1649-1650, 1995.
    [10] http://www.datasci.com/research/transmitters.html
    [11] N. C. Besseling, D. C. Maaren, and Y. J. Kingma, “An implantable biotelemetry transmitter for six differential signals,” Med. Biol. Eng., PP. 660-664, Nov. 1976.
    [12] T. Sinkjaer, M. Haugland, J. Strujik and R. Riso, “Long-term cuff electrode trcordings from peripheral nerves in animals and humans,” Modern Techniques in Neuroscience ed U Windhorst and H Johansson (New York: Springer), pp. 787-802, 1999
    [13] W. M. Grill, J. T. Mortimer, “Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrode,” IEEE Trans. Biomed. Eng., vol. 42, pp. 524-528, 1995.
    [14] D. K. Leventhal and D. M. Durand, “Chronic measurement of the stimulation selectivity of the flat interface nerve electrode,” IEEE Trans. Biomed. Eng., vol. 51, pp. 1649-1658, 2004.
    [15] W. M. Grill, J. T. Mortimer, “Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes,” IEEE Trans. Rehabilitation engineering, vol. 6, pp. 364-373, 1998.
    [16] C. H. Chang, J. D. Liao, J. J. Chen and M. S. Ju “Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode,” Langmuir, pp. 11656-11663, 2004.
    [17] Q. Huang, “A 0.5-mW passive telemetry IC for biomedical application,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 937-946, 1998.
    [18]C. M. Zierhofer and E. S. Hochmair, “High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link,” IEEE Trans. Biomedical Engineering, vol. 37, pp. 716-722, 1990.
    [19] Z. Tang and P. H. Peckham , “Multichannel implantable stimulation and telemetry system for neuromuscular control,” Proceed. 16th Ann. Intern. Conf. IEEE, pp. 442-443, 1994.
    [20] Z. Tang, B. Smith, J.H. Schild and P.H. Peckham, “Data transmission from an implatable biotelemeter by load-shift-keying using circuit configuration modulator,” IEEE Trans. Biomed. Eng., vol. 42, pp. 524-528, 1995.
    [21] B. S. Fu, “Design of bi-directional wireless communication for implantable biomicrosystem,” Masters Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2002
    [22] P. R. Troyk and M. A. K.Schwan, “Closed-loop class E transcutaneous power and data link for MicroImplants”, IEEE Trans. Biomed. Eng., vol. 39, pp. 589-599, 1992.
    [23] C. K. Liang , G. S. Young , J. J. Chen and C. K. Chen, " A microcontroller-based implantable neuromuscular stimulation system with wireless power and data transmission for animal experiments," J. Chin. Inst. Eng., 26(4), pp. 493-501, 2003.
    [24] Y. Kinouchi, T. Iritani, T. Ushita, T. Morimoto, S. Kimura, Y. Konishi and Y. Monden, “Impedance measurement of tumors and its application to diagnoses,” Proceedings of the Annual International Conference of the IEEE. Vol. 13, pp. 1311, 1988
    [25] P. M. Ramos, M. Fonseca da Silva, A. Cruz Serra, “ Low frequency impedance measurement using sine-fitting,” Measurement. Vol. 35, pp. 89-96, 2004
    [26] G.. G.. Naples, J. T. Mortimer, and T. G. Yuen, “Overview of peripheral nerve electrode design and implantation,” in Neural Prostheses: Fundamental Studies, W. F. Agnew and D. B. McCreey, Eds. Englewood Cliffs, NJ: Prentice Hall, pp. 107-145, 1990.

    下載圖示 校內:2007-08-04公開
    校外:2007-08-04公開
    QR CODE