研究生: |
林麗芳 Lin, Li-Fang |
---|---|
論文名稱: |
利用NBO理論計算來探討分子自組裝薄膜製程內硫醇與過渡金屬(Cu、Ag、Au)間的配位共價性 Studies of donor –acceptor interaction in self-assembled monolayers(SAMs) between thiol and transition metal (Cu、Ag、Au) by natural bond orbital method |
指導教授: |
王小萍
Wang, Shao-Pin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 配位共價 、分子自組裝薄膜 |
外文關鍵詞: | coordinate covalent bond, self-assembled monolayers |
相關次數: | 點閱:71 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於NBO 理論計算的觀點,傳統的雲散效應可以被引用去合理的解釋,關於奈米材料的製程中,對於RSH-Au 和RSH-Ag 的製備,發現金屬和硫醇的配位系統中,有兩種雲散現象,一、是從金屬的未共用電子對提供電子到硫原子的(4s 和4p) 空軌域。二、為金屬的未共用電子對提供電子到C-H 的反鍵結軌域(σ*C-H) 上。對於金屬和去氫的硫醇反應中,雲散效應只發生在金屬到硫原子的(4s 和4p)空軌域上,這些結果提供NBO 理論來解釋金屬與硫醇的配位的共價性,也提供金與硫醇形成硫醇-金錯合物的因素。
在定量上,利用二級微擾(不定域化能量) E(2)值來分析C8SH-M,其金屬的未共用電子對提供電子到硫原子的空軌域上,顯示電子不定域化E(2) 值的趨勢為Cu(3.8)>Au(2.7)>Ag(1.2)及對於金屬的未共用電子對提供電子到C-H 的反鍵結軌域(σ*C-H)上,其電子不定域化E(2) 值的趨勢為Cu(1.5)>Au(1.1)>Ag(1.0),將LP(M) donor RY*(S)的電子不定域化E(2)總值排序為Cu(5.3)>Au(3.8)>Ag(2.2),由此可知金屬具有雲散現象。值得注意的是在硫原子和金屬的配位共價性,其排序為Au(4.4)>Cu(4.3)>Ag(1.7) 。由此可解釋分子自組裝薄膜的形成是因烷基
硫醇的硫原子(頭基)與金屬形成共價吸附。我們利用NBO 理論計算的結果可支持RSH-Au 的共價吸附,相較於Cu(or Ag)來得有利。
將硫醇離子( RS- ) 和金屬做相同的donor –accepter interaction 分析,顯示其不定域化E(2) 值的趨勢是Cu(8.4)>Au(5.8)~>Ag(5.4),在此數據指出銅具最強的配位共價性,則對於Au-S 和Ag-S 間的共價性差異不大。
The conventional nephelauxeric (cloud expanding) effect has been employed,based on natural bond orbital approach, to account for the relatively highervalidity for preparation of RSH-Au than preparation of RSH-Ag nanomaterials. There are two electron-cloud expanding mechanisms found for
metal (Cu, Ag, Au) and RSH coordination bounded systems: metal to sulfurRydbrg orbitals (4s and 4p) and metal to CH sigma antibonding orbitals
( σ*C-H). For the metal and dehydrogen thiolates complexes (RS-metal), thecloud-expanding is dominated by metal to sulfur Rydbrg orbitals electrondelocalization. These results provide NBO-based interpretation of thereported “covalency” of the M-SH coordination bonds, which is suggested
one of the factors which enhance the formation of gold-SH.For the C8SH-metal, Quantitatively, second-order perturbation energy analysis reveals that Cu(3.8)>Au(2.7)>Ag(1.2) for metal to rydberg orbitals and Cu(1.5)>Au(1.1)>Ag(1.0) for metal to σ*C-H cloud-expanding. The overall nephelauxeric effects are therefore in the order Cu(5.3)>Au(3.8)>Ag(2.2) .It is noteworthy that the coordination bond between S and metal are in the order Au(4.4)>Cu(4.3)>Ag.(1.7) This can
explain the formation of SAMs from alkanethiole, in which covalent absorptions of RSH on metal produce head group. Our NBO results are in support of the considerably thermally favored RSH-gold compared with Cu (or Ag).
The same analysis performed on RS- and metal adducts reveals the delocalization energies in the trend, Cu(8.4)>Au(5.8)~>Ag(5.4), indicating
that the covalency of metal sulfur coordination bond is strongest for copper.
The virtually identical covalency of Au-S to that of Ag-S is not consistent with the reported factor concerning covalency.
1.Hehre, W. J. ; Radom, L. ; Schleyer, P. V. R. “Ab Initio Molecular Orbital Theory” Canada 1986.
2.Reed, A. E. ; Curtiss, L. A. ; Weinhold, F. Chem. Rev. 1988, 88, 899.
3.Reed, A. E. ; Weinstock, R. B. ; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
4.Lopez, G. P. ; Ratner, B. D. ; Rapoza, R. J. ; Horbeet, T. A. Macromolecules 1993, Vol.26, No13, 3247.
5.Favia, P. ; d’Agostino, R. “Plasma Treatments and Plasma Deposition of Polymers for Biomedical Applications”, Surface & Coatings Technology 1998, 1102.
6.Bigelow, W. C. ; Pickett, D. L.; Zisman, W. A. J. Colloid Interface Sci. 1946, 1, 513.
7.Kuhn, H. ; Mobious, D. In Physical Methodes in Chemistry Weissberger, A. ; Rossiter, B. W. eds. Wiley, New York, 1972.
8.Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
9.Bain, C. D. ; Whiteside, G. M. J. Am. Chem. Soc. 1989, vol.111, 7164.
10.Flokers, J. P. ; Laibinis, P. E. ; Whiteside, G. M. Langmuir 1992, vol.8, 1330.
11.Laibinis, P. E. ; Whiteside, G. M. ; Allara, D. L. ; Tao, Y. T. ; Parikh, A. N. ; Nuzzo, R. G. J. Am. Chem. Soc. 1991, vol.113, 7152.
12.Dubois, L. H. ; Nuzzo, R. G. Annu. Rev. Phys. Chem 1992, Vol.43, 437.
13.Ulman, A. “An introduction to ultrathin organic films” Part III, 1993, 237.
14.Mar, W. ; Hautman, J. ; Klein, M. L. Computational Materials Science, 1995, Vol.3, 481.
15.Bain, C. D. ; Troughton, E. B. ; Tao, Y. T. ; Evall, J. ; Whitesides, G.M. ; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321.
16.Brust, M. ; Walker, M. ; Bethell, D. ; Schiffrin, D. J. ; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
17.Chailapakul, O. ; Sun, L. ; Xu, C. ; Crooks, M. J. Am. Chem. Soc. 1993, 115, 12459.
18.Thomas, R. C. ; Sun, L. ; Crooks, M. Langmuir 1991, 7, 620.
19.Atre, S. V. ; Liedberg, B. ; Allara, D. L. Langmuir 1995, 11, 3882.
20.Rosenblum, B. ; Nethercot, A. H. J. Chem. Phys. 1957, 27, 828.
21.Hsieh, Y. ; Koo, J. C. ; Hahn, E. L. Chem. Phys. Lett. 1972, 13, 563.
22.Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142.
23.Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69
24.Weeny, R. M. ; Dierksen, G. ; Nugent, W. A. ; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852.
25.Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids(McGraw-Hill, New York, 1974).
26.Weeny, R. M. ; Dierksen, G. ; Nugent, W. A. ; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142.
27.Hohenberg, P. ; Kohn, W. Physical Review 1964, 136, B864.
28.Kohn, W. ; Sham, L. J. Physical Review 1965, 140, A1133.
29.Salahub, D. R. ; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
30.Parr, R. G. ; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
31.Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
32.Becke, A. D. Phys. Rev. 1988, A38, 3098.
33.Lee, C. ; Yang, W. ; Parr, R. G. Physical Review 1988, B37, 785.
34.Miehlich, B. ; Savin, A. ; Stoll, H. ; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
35.Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct. 2000, 507, 153.
36.Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. 2001, 543, 285.
37.Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004.
38.Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070.
39.Reed, A. E. ; Weinhold, F. J. Chem. Phys. 1986, 84, 5687.
40.Weinhold, F. J. Mol. Struct. 1997, (Theochem) 181, 398.
41.Mitzel, N. W. ; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320.
42.Goodman, L. ; Pophristic, V. ; Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
43.Hobza, P. ; Sponer, J. ; Cubero, E. ; Orozco, M. ; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286.
44.Reimann, B. ; Buchhold, K. ; Vaupel, S. ; Brutschy, B. ; Havlas, Z. ; Spirko, V. ; Hobza, P. J. Phys. Chem. A 2001, 105, 5560.
45.Ananthavel, S. P. ; Manoharan, M. Chem. Phys. 2001, 49, 269.
46.Wilkens, S. J. ; Weatler, W. M. ; Weinhold, F. ; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190.