簡易檢索 / 詳目顯示

研究生: 陳維青
Chen, Wei-Chin
論文名稱: 全透明式氧化鋅薄膜電晶體應用於大型平面顯示器之研究
Fabrication of All-ZnO-based transparent Thin Film Transistors for Large Size Flat Plane Display Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 薄膜電晶體氧化鋅
外文關鍵詞: ZnO, Thin Film Transistors
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅被認為是一種相當有潛力於製作薄膜電晶體的半導體材料,具有直接能隙 (Eg=3.35eV)、高場效載子移動率、高透光性及高阻抗值。在本論文使用射頻磁控濺鍍法(Radio Frequency magnetron sputtering)濺鍍氧化鋅薄膜於玻璃或矽晶片(P-type(100))表面,以純氧化鋅靶為靶材,通入氬氣及氧氣進行薄膜成長。藉由控制射頻必v、添加氣體、氣體流量及摻雜鋁離子濃度來探討濺鍍製程參數對沉積氧化鋅薄膜之表面結晶結構及電阻率的影響。實驗結果發現,適當的控制氧氣濃度、射頻必v與氣體流量下,可獲得以c軸(002)為優選取向的氧化鋅薄膜;電阻率約在2×107 ~105Ωcm之間,可見光穿透率在70%以上。吾人再經由XRD、SEM、alpha-step、AFM 、FTIR等儀器對薄膜的分析結果來找出最佳製程參數。
    利用取得的氧化鋅薄膜最佳成長參數,在玻璃上研製全透明式氧化鋅薄膜電晶體,量測其I-V特性。所成長出元件特性為: 最低關電流為1.28 ×10-11(A)、最高開電流為8.93×10-8(A)、最大開關電流比為~104。這些特性與傳統式氧化鋅薄膜電晶體相較差不多,但本元件具有全透明式的優點,應用於平面液晶顯示器可得較大的開口率,故更適用未來大尺寸顯示用。

    This thesis reported, for the first time to prepare a full transparent thin film transistor (TFT) on glass substrate with Zinc oxide (ZnO). The ZnO has been considered as a promising candidate for TFT. It possesses many interesting properties, such as a wide energy bandgap, highly transparent nature in the visible light, and rather high mobility and resistivity. In this study, the R.F magnetron sputtering technique was employed to sputter ZnO thin film on glass or Si substrate (P-type (100)) under a mixture of argon and oxygen gas ambient. By controlling O2 concentration、RF power、 and Argon gas flow rate pressure,the ZnO thin films with C-axis preferred orientation ,electric resistivity between 2x107 and 105Ωcm, and 70% in visible transmittance were obtained. The microstructure and properties of the resulting ZnO thin film were examined by using X-Ray diffractometry、SEM、alpha-step、AFM and FTIR.
    With the optimized deposition parameters, the full transparency ZnO TFTs on glass substrate were prepared. The leakage current, driving on current, and on/off current ratio of the developed ZnO TFTs are 1.28×10-11A, 8.93×10-8A, and~104 ,respectively. These data are comparable to the conventional non-full transparency ZnO TFTs. However, the developed full transparency ZnO TFTs has a narrower aperture rate, thus preferring for future advanced large dimension flat panel display applications.

    中文摘要…………………………………………………………………I 英文摘要………………………………………………………………III 誌謝……………………………………………………………………V 目錄……………………………………………………………………VI 圖表目錄………………………………………………………………IX 第一章 緒論 1-1 前言……………………………………………………………1 1-2 論文架構………………………………………………………5 第二章 理論基礎 2-1 濺鍍理論………………………………………………………6 2-1-1 濺射現象………………………………………………6 2-1-2 輝光放電(Glow Discharge) ……………………………7 2-1-3 沉積現象………………………………………………8 2-2 氧化鋅薄膜結構與性質………………………………………9 2-3 薄膜電晶體概論……………………………………………10 第三章 實驗方法與步驟 3-1 磁控濺鍍系統………………………………………………13 3-1-1 射頻濺射…………………………………………………13 3-1-2 反應性濺射………………………………………………14 3-1-3 磁控濺鍍理論……………………………………………15 3-2 薄膜分析量測儀器…………………………………………16 3-2-1 掃瞄式電子顯微鏡 (SEM) …………………………16 3-2-2 原子力顯微鏡 (AFM) ………………………………17 3-2-3 X光繞射儀 (XRD) …………………………………17 3-2-4 拉曼光譜儀(Raman Spectra) ………………………18 3-2-5 四點探針 (Four-Point Probe) ………………………19 3-2-6 膜厚量測儀 (?Step) ………………………………19 3-3 實驗流程……………………………………………………20 3-3-1 基板製作與清洗………………………………………20 3-3-2 薄膜濺鍍………………………………………………21 3-3-3 薄膜電晶體製作………………………………………21 第四章 結果與討論 4-1 氧化鋅薄膜分析……………………………………………23 4-1-1 濺鍍必v對薄膜特性的影響…………………………23 4-1-2 氣體流量對薄膜特性的影響…………………………25 4-1-3 通入氧氣前後薄膜特性的改變………………………26 4-1-4 摻雜Al離子……………………………………………26 4-1-5 熱退火處理對薄膜特性的影響………………………28 4-2 薄膜電晶體製作……………………………………………28 4-2-1 測試適合參數…………………………………………28 4-2-2 改變絕緣層厚度………………………………………29 4-2-3 降低通道層必v………………………………………29 第五章 結論與展望…………………………………………………31 參考文獻………………………………………………………………33 附表……………………………………………………………………35 附圖……………………………………………………………………38

    [1] 工研院經資中心IEK, 2003/5
    [2] William S. Wong,Steven E.Ready, IEEE ELECTRON DEVICE LETTERS, VOL.
    24, NO. 9, SEPTEMBER 2003
    [3] Y. Hamakawa (Ed.), Amorphous semiconductor technologies and devices, Japan
    annual reviews in electronics, computers & telecommunications vol. 22
    [4] F.Gourbilleau, A. Achiq, P.Voivenel, and R. Rizk, “Crystallization control of the
    amorphous buffer layer on hydrogenated nanocrystalline silicon”,Thin Solid Film,
    337, pp74-77 (1999)
    [5] Yuliang He, Chenzhong Yin, Guangxu Cheng, Luchun Wang, and Xiangna Liu,
    “The structure and properties of nanosize crystalline silicon films”, J. Appl. Phys.,
    75(2), 797 (1994)
    [6] A.Achiq, R. Rizk, F.Gourbilleau, and R. Madelon, “Effects of prior hydrogenation
    of the structure and properties of thermally nanocrystallized silicon layers”, J.
    Appl. Phys., 83, 5797 (1998)
    [7] E. Bustarret and M. A. Hachicha, “Experimental determination of nanocrystalline
    volume fraction in silicon thin films from Raman spectroscopy”, Appl. Phys. Lett.,
    52(20), 1657 (1988)
    [8] A. Kaan Kalkan, Sanghoon Bae, Handong Li, Daniel J. Hayes, and Stephen J.
    Fonash, “Nanocrystalline Si thin films with arrayed void-column network
    deposited by high density plasma”, J. Appl. Phys., 88(1), 555 (2000)
    [9] P. Roca I Cabarrocas, ”New approaches for the production of nano-, micro-, and
    polycrystalline silicon thin films”, Phys. Stat. Sol., 1(5), 1115 (2004)
    [10] Won Chel Choi, Eun Kyu Kim, and Suk-Ki Min, “Direct formation of
    nanocrystalline silicon by electron cyclotron resonance chemical vapor
    deposition”, Appl. Phys. Lett., 70(22), 3014 (1997)
    [11] C.-S. Tang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of
    low-temperature amorphous silicon thin film transistors formed on glass and
    transparent plastic substrates”, J. Vac. Sci. Technol. B 18(2), 683 (2000)
    [12] A. Sazonov and A. Nathan, “120 fabrication technology for a℃-Si:H thin film
    transistor on flexible polyimide substrates”, J. Vac. Sci. Technol. A 18(2), 780
    (2000)
    [13] C. S. McCormick, C. E. Weber, and J. R. Abelson, “An amorphous thin film
    transistor fabricated at 125 by dc reactive magnetron sputtering”, ℃Appl. Phys.
    Lett. 70(2), 226 (1997)
    [14] Helena Gleskova and Sigurd Wanger, “Amorphous silicon thin-film transistor on
    compliant polyimide foil substrates”, IEEE ELECTRON DEVICE LETTER,
    20(9), 473 (1999)
    [15] 賴耿陽, “IC 製程之濺射技術”,復漢出版社, (1997)
    [16] 王福貞,聞立時, “表面沉積技術”,機械工業出版社,114-204
    [17] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
    [18] Mebarji, B. , Sumiya, S. , Yoshida, R. , Ito, M. , and Tsukada, T. , Materials
    Letters, 41, 16(1999)
    [19] T. Minami, "Conduction mechanism of highly conductive and transparent zinc
    oxide thin films prepared by magnetron sputtering",J. Cry. Grow. ,117
    (1992),370-374
    [20] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J.
    Bertomeu, J. Andreu, R. Alcubilla,“Electronic transport in low temperature
    nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of
    Non-Crystalline Solids, 299–302, pp.400–404(2002)
    [21] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterda,“Semiconductor device modeling for
    VLSI,”1 ed. New jersey:Prentice Hall, Inc.(1993)
    [22] M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, T. Ytterdal,“SPICE models
    for amorphous silicon and polysilicon thin film transistors,” Journal of the
    Electrochemical Society, 144, pp. 2833-9(1997)
    [23] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”J. Appl. Phys., vol.
    46, pp. 3381, 1975.
    [24] K. Ghandhi, “VLSI fabrication principles:Si and GaAs”, John Wiley & Sons,
    INC, pp. 522-575, 1994.
    [25] Khan A. Alim, Vladimir A. Fonoberov, Manu Shamsa, and Alexander A.
    Balandina, “Micro-Raman investigation of optical phonons in ZnO
    nanocrystals,” JOURNAL OF APPLIED PHYSICS 97, 124313 _2005_
    [26] E. Bachari, G. Baud, S. Amor, and M. Jacquet, “Structure and optical properties
    of sputtered ZnO films”, Thin Solid Films, vol. 348, no. 1, pp. 165-172, 1999.
    [27] 王宏文,淺談表面聲波感應器,工業材料--精密陶瓷專輯89期,民國95年。
    [28] Y. Ohya, H. Saiki, and Y.Takahashi, “Preparation of transparent electrically
    conducting ZnO film zinc acetate and alkoxide”, Journal of Materials Science,
    vol. 29, pp. 4013-4029, 1994.
    [29] U. Lampe, and J. Muller, “Thin-film ZnO properties and akklication”, Ceramics
    Bulletin, vol. 69, pp. 19959-19965, 1990
    [30] J. Crystal Growth 294 (2006) 427

    下載圖示 校內:2009-11-10公開
    校外:2009-11-10公開
    QR CODE