| 研究生: |
張嘉真 Chang, Chia Chen |
|---|---|
| 論文名稱: |
選擇性發酵技術用於蔗糖酒精共生系統之產率模擬 Productivity simulation of combined sugar and ethanol production with selective fermentation technology |
| 指導教授: |
福島康裕
Yasuhiro Fukushima |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 選擇性發酵技術 、產率 、蔗糖 、酒精 、最佳化 、情境模擬 |
| 外文關鍵詞: | selective fermentation technology, productivity enhancement, sugar, ethanol, optimization, scenario development |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今許多國家致力於發展生質酒精以降低對原油的需求。然而,生質酒精的生產卻造成能源與糧食競爭的現象加劇。為了解決競爭的問題,選擇性發酵技術首創以高純度以及低純度的糖漿為原料,從中析出蔗糖以提高蔗糖的產量;選擇性發酵技術的原理為:在蔗糖結晶程序之前,選擇性地發酵存在在糖漿中的還原糖,如此可減少糖漿的黏滯性,先分離發酵液與糖漿以提高糖漿的純度,增加原糖的萃取效率。因此,當高還原糖比率及高產量特性的品種為甘蔗工場之原料並與選擇性發酵技術並用時,糖與酒精生產率之穩定與提升的可能性則提高。
為了推廣選擇性發酵技術用於甘蔗工場全系統,本研究模擬選擇性發酵技術導入的情況下,加上改變甘蔗品種與收穫時間,探討上述變數對於糖與酒精產率之影響。在此研究中開發一個原型模型,此原型的目的是強調選擇性發酵技術的導入,藉由最佳化技術以及設定情境模擬,以分析改變甘蔗品種與收穫時間對於糖與酒精產量之影響。此示範性情境模擬之結果顯示,選擇性發酵法技術與高產量、高生物質及高還原糖含量的品種相組合具有潛在優勢。
除此之外,本研究也指出幾項關於甘蔗種植面的新的數據需求,譬如說更廣泛的生長曲線(蔗莖重量、組成分)、宿根兩年至四年的觀測以及依照月份分配之受颱風影響物理損傷的比率。 本研究亦有納入未來研究方向包括模型和數據庫強化之討論。
Selective fermentation realized by invertase-defective yeasts that convert only the reducing sugars in a mixed saccharide (e.g. sugarcane juice) into ethanol is an emerging process technology in sugarcane industry. This technology opens possibilities in stabilization and enhancement of total productivity of sugar and ethanol, as productive and stronger cultivars that have higher content of reducing sugar becomes a potential raw material in sugar mills. To trigger the system-wide innovation of this technology, the changes in stability and enhancement of productivity must be described by changes in cultivars and cropping schedules. Here, a descriptive model developed in this study highlights consequences of introduction of selective fermentation technology considering a given scenario on choice of cultivars and cropping schedules. Moreover, utilizing a prototype database, design of scenarios based on optimization techniques are demonstrated. The results from demonstrative scenario design indicate the potential advantages of selective fermentation technology in combination with a cane cultivar with high yield, high biomass and reducing sugar content on Tanegashima Island of Japan. The study also indicates the new requirement on data from sugarcane cultivation, such as a wider range of growth profiles (stalk weight, composition), growth and harvest observations of perennial ratoon and rate of physical damage by typhoon by varied rationing months. Future directions of study including directions in enhancement of the model and database are discussed.
1. Tejera, N.A., et al., Comparative analysis of physiological characteristics and yield components in sugarcane cultivars. Field crops research, 2007. 102(1): p. 64-72.
2. Evensen, C.I., R.C. Muchow, and S.A. El-Swaify, Yield accumulation in irrigated sugarcane: I. Effect of crop age and cultivar. Agronomy Journal, 1997. 89: p. 638-646.
3. Tew, T.L. and R.M. Cobill, Genetic improvement of sugarcane (Saccharum spp.) as an energy crop, in Genetic improvement of bioenergy crops. 2008, Springer. p. 273-294.
4. Mishoe, J., J. Jones, and G. Gascho, Harvesting scheduling of sugarcane for optimum biomass production. Transactions of the ASAE, 1979. 22(6): p. 1299-1304.
5. Matsuoka, M., Sugarcane cultivation and sugar industry in Japan. Sugar Tech, 2006. 8(1): p. 3-9.
6. 藤崎成博, 寺島義文,園田純也,西裕之,白澤繁清, 奄美地域における高バイオマス用サトウキビ有望系統の生産力と品質評価. 日本作物学会九州支部会報, 2010(76): p. 37-40.
7. 独立行政法人 農業・食品產業技術総合研究機構, 九州沖縄農業研究センター, バイオマス・資源作物開発チーム(さとうきび育種ユニット), 新品種候補決定に関する参考成績書, さとうきび「KY01-2044」. 2010.
8. Liu, D.L. and T.A. Bull, Simulation of biomass and sugar accumulation in sugarcane using a process-based model. Ecological Modelling, 2001. 144(2–3): p. 181-211.
9. Lin, Chief of mill, Taiwan Sugar Corporation, Personal communication at Nanjing sugar mill, C. Chia Chen, Editor. 2013.
10. 王啓柱, 蔗作學. 1979: 國立編譯館. 761.
11. 陳詩評, 評估臺灣以甘蔗製造之酒精燃料的溫室氣體排放 Greenhouse Gas Emission Induced by Ethanol Fuel Produced from Sugarcane in Taiwan, in Department of Environmental Engineering. 2008, National Cheng Kung University: Tainan, Taiwan.
12. 台灣糖業公司糖業手冊修訂委員會, 糖業手冊. 1979, 臺北市: 臺灣糖業公司.
13. 山根嶽雄, 甘蔗糖製造法. 1965, 臺北市: 臺灣糖業.
14. 製糖研究會, 糖業便覽 Vol. 第二卷, 甘蔗糖工場試驗法. 昭和8, 東京. 249-339.
15. Ohara, S., et al., Rethinking the cane sugar mill by using selective fermentation of reducing sugars by Saccharomyces dairenensis, prior to sugar crystallization. Biomass and Bioenergy, 2012. 42: p. 78-85.
16. サトウキビの可製糖量関連マーカーとその利用. Available from: http://www.ekouhou.net.
17. Ohara, S., et al., Selective ethanol production from reducing sugars in a saccharide mixture. Journal of bioscience and bioengineering, 2013. 115(5): p. 540-543.
18. McCown, R., et al., APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural systems, 1996. 50(3): p. 255-271.
19. O’Leary, G.J., A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crops Research, 2000. 68(2): p. 97-111.
20. Sugars International. [cited 2013; Available from: http://www.sugarsonline.com/.
21. Weiss, L.W., Sugar Factory Process Optimization Using the Sugars™ Computer Program. 1989, 25th General Meeting of the American Society of Sugar Beet Technologists: New Orleans, Louisiana.
22. What's Best! 2014, LINDO SYSTEMS.
23. Lindo Systems Inc. An Overview of What'sBest! 2015; Available from: http://www.lindo.com/index.php?option=com_content&view=article&id=3&Itemid=11.
24. 農林水產省 九州農業試驗場, 作物開発部さとうきび育種研究室, 新品種決定に關する参考成績書, さとうきび「KF81-11」. 1991.
25. 西之表市、中種子町、南種子町、種子屋久農業協同組合、熊毛農業共濟組合、熊毛地區農林技術協會、種子島糖業振興會、熊毛地區米麥大豆等生產對策協議會、種子島地區さつまいも‧でん粉對策協議會, 栽培ごよみ. 平成25年.
26. Agency, J.M. Japan Meteorological Agency. Available from: http://www.jma.go.jp/jma/index.html.
27. Walford, S. Composition of cane juice. in Proc. S. Afr. Sug. Technol. Ass. 1996.
28. Engelke, J., Sugarcane: measuring commercial quality. Farmnote, 2005. 23: p. 2002.
29. Amin, M.R., M.S. Al-Hossain, and M. Sarker, Simulation of Ethanol Production by Fermentation of Molasses. Journal of Engineering, 2013. 1(4): p. 69-73.
30. 新光糖業株式会社. [cited 2014 June 5th]; Available from: http://www.shinko-sugar.co.jp/.
校內:2016-02-16公開