簡易檢索 / 詳目顯示

研究生: 蔡丞育
Tsai, Cheng-Yu
論文名稱: 非線性光學分析不同晶向與不同氧化層厚度的矽基板與矽氧化層的缺陷密度
Nonlinear Optical Analysis of density of states between Silicon Substrates and Silicon Oxide Layers with Different Crystal Orientations and Different Oxide Layer Thickness
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 二次諧波產生氧化矽介面缺陷密度基板晶向半導體可靠度
外文關鍵詞: SHG, silicon oxide, density of states, substrate orientation, semiconductor reliability
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I NONLINEAR OPTICAL ANALYSIS OF DENSITY OF STATES BETWEEN SILICON SUBSTRATES AND SILICON OXIDE LAYERS WITH DIFFERENT CRYSTAL ORIENTATIONS AND DIFFERENT OXIDE LAYER II 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 介紹 1 1.1 概述 1 1.2 氧化矽缺陷在GAA結構中的重要性 2 1.3 晶向對氧化層缺陷形成的影響 3 1.4 總結 4 第二章 原理 5 2.1 二次諧波(SECOND HARMONIC GENERATION,SHG) 5 2.1.1 二次諧波的原理 5 2.1.2 樣品中的SHG 7 2.2 簡化鍵超極化率模型(SIMPLIFIED BOND-HYPERPOLARIZABILITY MODEL, SBHM) 13 2.3 電場感應二次諧波(ELECTRIC FIELD INDUCED SECOND HARMONIC GENERATION, EFISHG) 15 2.3.1 EFISHG的原理 15 2.3.2 介面和表面中的電荷束縛跟EFISHG 17 2.3.3 時間相依二次諧波模型Time dependent second harmonic generation model(TD-SHG model) 18 第三章 實驗設置 20 3.1 反射式二次諧波系統(RSHG)與真空系統 20 3.2 樣品條件 21 3.2.1 霍爾量測 21 3.2.2 橢圓偏光儀 22 3.2.3 拉曼光譜(Raman spectroscopy) 22 3.3 實驗方法 23 第四章 結果與討論 24 4.1 霍爾量測 24 4.2 橢圓偏光儀 24 4.3 拉曼光譜 25 4.4 系統校正 26 4.5 TD-SHG 實驗數據及結果分析 27 4.6 SBHM實驗數據及結果分析 32 總結與未來展望 37 參考文獻 39

    [1] X. Cheng et al., "Investigation on thermal stability of Si0. 7Ge0. 3/Si stacked multilayer for gate-all-around MOSFETS," Semiconductor Science and Technology, vol. 35, no. 11, p. 115008, 2020.
    [2] T.-Y. Yen, Y.-H. Huang, M.-T. Shih, W.-T. Chen, K.-M. Hung, and K.-Y. Lo, "Correlation of time-dependent nonlinear response with phosphorus concentration in Si ultrathin film," Surfaces and Interfaces, vol. 36, p. 102541, 2023.
    [3] R. W. Boyd, "Quantum-mechanical theory of the nonlinear optical susceptibility," Nonlinear optics, pp. 129-187, 2003.
    [4] S. A. Yang, X. Li, A. D. Bristow, and J. Sipe, "Second harmonic generation from tetragonal centrosymmetric crystals," Physical Review B—Condensed Matter and Materials Physics, vol. 80, no. 16, p. 165306, 2009.
    [5] S. Sharma and C. Ambrosch-Draxl, "Second-harmonic optical response from first principles," Physica Scripta, vol. 2004, no. T109, p. 128, 2004.
    [6] J. Mihaychuk, J. Bloch, Y. Liu, and H. Van Driel, "Time-dependent second-harmonic generation from the Si–SiO2 interface induced by charge transfer," Optics Letters, vol. 20, no. 20, pp. 2063-2065, 1995.
    [7] T.-Y. Yen, M.-T. Shih, L.-F. Song, K.-M. Hung, and K.-Y. Lo, "Unveiling dopant concentration in boron doped Si ultrathin film: Enhanced analysis using time-dependent second harmonic generation," Surfaces and Interfaces, vol. 41, p. 103236, 2023.
    [8] J. Sipe, D. Moss, and H. Van Driel, "Phenomenological theory of optical second-and third-harmonic generation from cubic centrosymmetric crystals," Physical Review B, vol. 35, no. 3, p. 1129, 1987.
    [9] C. Reitböck, D. Stifter, A. Alejo-Molina, K. Hingerl, and H. Hardhienata, "Bulk quadrupole and interface dipole contribution for second harmonic generation in Si (111)," Journal of optics, vol. 18, no. 3, p. 035501, 2016.
    [10] G. Lüpke, "Characterization of semiconductor interfaces by second-harmonic generation," Surface Science Reports, vol. 35, no. 3-4, pp. 75-161, 1999.
    [11] R. Sharma, "Optical second-harmonic generation in n-InSb," Physical Review A, vol. 21, no. 1, p. 253, 1980.
    [12] H. Tom, T. Heinz, and Y. Shen, "Second-harmonic reflection from silicon surfaces and its relation to structural symmetry," Physical Review Letters, vol. 51, no. 21, 1983.
    [13] H. Hardhienata, A. Alejo-Molina, C. Reitböck, A. Prylepa, D. Stifter, and K. Hingerl, "Bulk dipolar contribution to second-harmonic generation in zincblende," Journal of the Optical Society of America B, vol. 33, no. 2, pp. 195-201, 2016.
    [14] 洪楊皓, "氣體分子吸附在 WS2 的電極化演進: 二次諧波與 SBHM 整合分析," 2023.
    [15] 宋龍福, "超薄膜矽與矽鍺結構非線性光學與簡化鍵超極化率模型分析," 2024.
    [16] J. Schmidt, M. Eilert, S. Peters, and T. F. Wietler, "Characterization of thin SiGe layers on Si (001) by spectroscopic ellipsometry for Ge fractions from 0 to 100%," Applied Surface Science, vol. 421, pp. 772-777, 2017.
    [17] C. Oseen, "The interaction between two electric dipoles and the rotation of the polarization plane in crystals and liquids," Ann. Phys., vol. 353, pp. 1-56, 1915.
    [18] P. Ewald, "Reasoning of the crystal optics," PhD thesis, München, 1912.
    [19] H. Peng, E. Adles, J.-F. Wang, and D. Aspnes, "Relative bulk and interface contributions to optical second-harmonic generation in silicon," Physical Review B—Condensed Matter and Materials Physics, vol. 72, no. 20, p. 205203, 2005.
    [20] E. Adles and D. Aspnes, "Application of the anisotropic bond model to second-harmonic generation from amorphous media," Physical Review B—Condensed Matter and Materials Physics, vol. 77, no. 16, p. 165102, 2008.
    [21] O. Aktsipetrov et al., "dc-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si (001)− SiO 2 interfaces," Physical Review B, vol. 60, no. 12, p. 8924, 1999.
    [22] H. Park et al., "Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation," Applied Physics Letters, vol. 95, no. 6, 2009.
    [23] V. Fomenko, E. Gusev, and E. Borguet, "Optical second harmonic generation studies of ultrathin high-k dielectric stacks," Journal of Applied Physics, vol. 97, no. 8, 2005.
    [24] J. Bloch, J. Mihaychuk, and H. Van Driel, "Electron photoinjection from silicon to ultrathin Si O 2 films via ambient oxygen," Physical Review Letters, vol. 77, no. 5, p. 920, 1996.
    [25] F. Werner, "Hall measurements on low-mobility thin films," Journal of Applied Physics, vol. 122, no. 13, 2017.
    [26] H. Ogawa, M. Nishikawa, and A. Abe, "Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films," Journal of Applied Physics, vol. 53, no. 6, pp. 4448-4455, 1982.
    [27] G. Jellison Jr, "Examination of thin SiO2 films on Si using spectroscopic polarization modulation ellipsometry," Journal of applied physics, vol. 69, no. 11, pp. 7627-7634, 1991.
    [28] K. Brunner, G. Abstreiter, B. Kolbesen, and H. Meul, "Strain at Si SiO2 interfaces studied by Micron-Raman spectroscopy," Applied Surface Science, vol. 39, no. 1-4, pp. 116-126, 1989.
    [29] A. Bongiorno and A. Pasquarello, "Dependence of the O2diffusion rate on oxide thickness during silicon oxidation," Journal of Physics: Condensed Matter, vol. 15, no. 16, p. S1553, 2003.
    [30] B. Mrstik, A. Revesz, M. Ancona, and H. Hughes, "Structural and Strain‐Related Effects during Growth of SiO2 Films on Silicon," Journal of the Electrochemical Society, vol. 134, no. 8, p. 2020, 1987.

    無法下載圖示 校內:2030-07-23公開
    校外:2030-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE