簡易檢索 / 詳目顯示

研究生: 楊芷璇
Yang, Chih-Hsuan
論文名稱: 紫杉醇臨床施打計劃對神經細胞及癌細胞生物學與生物力學之影響
Biological and Biomechanical Effects of Clinical Dosing Schedule of Paclitaxel on Neurons and Cancer Cells
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 化療引發周邊神經病變紫杉醇藥物動力學細胞彈性力學原子力顯微鏡背根神經節神經元黑色素瘤細胞
外文關鍵詞: CIPN, paclitaxel, cell elasticity, AFM, DRG cells, melanoma
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是目前國人十大死因之首,然而化療引起的周邊神經病變卻常導致藥劑減量或療程中止而致影響療效,為降低副作用,臨床上也提出許多施打方式。本研究以取自C57BL/6小鼠的DRG神經細胞及B16F10黑色素瘤細胞為實驗樣本,再參考藥物動力學,開發自動換液裝置,以多個步階模擬臨床紫杉醇3小時短時注射及24小時長時注射的藥物濃度變化(藥劑量:135mg/m^2),於療程中設置三個觀察點,並和控制組相互比較。神經細胞之影像分析結果顯示經紫杉醇處理的細胞,其軸突末梢都易出現腫脹,而3小時注射會使軸突總長度縮短,且不利於分支;24小時注射則會減緩軸突生長速度,但總長度並不會縮短。於癌細胞之存活率分析則是顯示3小時注射會有較佳的療效。在細胞本體的原子力顯微鏡壓痕試驗則顯示DRG神經細胞於3小時注射下,楊氏模數會上升後持平,而24小時則是於最後一個觀察點稍降;癌細胞於兩個注射方式下皆使細胞本體的楊氏模數上升,且3小時注射之上升幅度較高。綜合上述的結果,推論3小時注射雖有較好的療效,但卻使微管更易聚積在細胞本體且軸突縮短,較不利於神經之生長,也許更容易導致周邊神經病變。

    Chemotherapy-induced peripheral neuropathy(CIPN) often results in dose reduction or therapy termination. The goal of this study is to build an automatic system which can simulate the pharmacokinetics of 3-hr or 24-hr paclitaxel treatment (dose:135 mg/m2) by several unit step functions and use it to evaluate the influences of two infusion schedules on biological and biomechanical changes of neurons and cancer cells. Dorsal root ganglion (DRG) neurons from C57BL/6 and melanoma cells (B16F10) were used as samples and three observation times were set for each infusion schedule. The results of image analysis of neuron cells showed that axonal swellings were found with accumulation of microtubules and neurofilaments in both schedules. Besides, 3-hr infusion shortened the length of axons and was detrimental to axon branches. However, 24-hr infusion just slowed the growth rate. Viability analysis revealed that 3-hr infusion has better anticancer effect. The atomic force microscope (AFM) indentation tests were performed on somas of DRG neuron cells and B16F10 cells. For DRG neuron cells, the results showed that Young's modulus first increased and then remained unchanged in 3-hr infusion. In contrast, the Young's modulus declined slightly on the last observation time in 24-hr infusion. For the B16F10 cells, Young's modulus increased in both infusion schedules and the values of 3-hr infusion increased more than those in 24-hr infusion. In summary, although 3-hr infusion showed better anticancer effect, it made microtubules of neurons be liable to accumulate at somas and shortened the axons. Therefore, 3-hr infusion may be more likely to induce CIPN.

    第一章 緒論1 1.1 癌症與化療引起之周邊神經病變1 1.2 太平洋紫杉醇(Paclitaxel)及臨床用藥3 1.3 細胞力學簡介4 1.4 研究動機與目的6 第二章 方法與實驗8 2.1 DRG神經細胞培養9 2.2 B16F10 黑色素瘤細胞繼代培養10 2.3 臨床藥物濃度擬合11 2.4 自動換液系統及細胞環境控制13 2.5 DRG神經細胞形貌分析15 2.6 癌細胞(B16F10)存活率分析19 2.7 細胞壓痕實驗設計22 2.8 細胞免疫螢光染色與分析28 2.9 實驗觀察點設計30 2.10 統計分析31 第三章 結果32 3.1 DRG細胞形貌分析32 3.2 癌細胞存活率分析42 3.3 螢光染色分析 43 3.4 原子力顯微鏡量測分析46 第四章 討論57 4.1 自動換液系統 57 4.2 細胞於換液系統及培養箱內生長情況之比較 59 4.3 DRG於不同注射計劃下的差異60 4.4 癌細胞於不同注射計劃下的生長情況62 4.5 不同施打計劃結果與臨床研究之比較63 4.6 結論65 4.7 建議66 參考文獻 67 附錄一 細胞培養相關程序73 附錄二 換液裝置說明77

    [1]F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394-424, 2018.
    [2]E. S. Krames, “The role of the dorsal root ganglion in the development of neuropathic pain,” Pain Med. (United States), vol. 15, no. 10, pp. 1669-1685, 2014.
    [3]Y. Fukuda, Y. Li, and R. A. Segal, “A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy,” Front. Neurosci., vol. 11, no. August, pp. 1-12, 2017.
    [4]孫婉娜, 蘇靖幃, 申子蘋, 許心恬, "運用實證探討口服麩酼胺對癌症病人接受化學治療引起的周邊神經病變之成效," 護理雜誌65卷1期,中華民國107年2月。
    [5]C. Brami, T. Bao, and G. Deng, “Natural products and complementary therapies for chemotherapy-induced peripheral neuropathy: A systematic review,” Crit. Rev. Oncol. Hematol., vol. 98, pp. 325-334, 2016.
    [6]M. T. Kuo and H. T. Hsu, “An introduction of chemotherapy induced peripheral neuropathy,” The Journal of Oncology Nursing, vol. 15, no. 2, pp. 69-82, 2015.
    [7]M. Seretny et al., “Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis,” Pain, vol. 155, no. 12, pp. 2461-2470, 2014.
    [8]J. Addington and M. Freimer, “Chemotherapy-induced peripheral neuropathy: an update on the current understanding,” F1000Res, vol. 5, p. 1466, 2016.
    [9]C. Ritter et al., “Paclitaxel inhibits mRNA transport in axons,” Neurobiol. Dis., vol. 82, pp. 321-331, 2015.
    [10]E. Persohn et al., “Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats,” Eur. J. Cancer, vol. 41, no. 10, pp. 1460-1466, 2005.
    [11]D. Saavedra-Perez et al., “Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer,” Neurology, vol. 77, no. 10, pp. 987-995, 2011.
    [12]S. J. L. Flatters, P. M. Dougherty, L. A. Colvin, “Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review,” Br. J. Anaesth., vol. 119, no. 4, pp. 737-749, 2017.
    [13]G. W. Berbusse, L. C. Woods, B. P. S. Vohra, and K. Naylor, “Mitochondrial dynamics decrease prior to axon degeneration induced by vincristine and are partially rescued by overexpressed cytNmnat1,” Front. Cell. Neurosci, vol. 10, pp. 1–8, 2016
    [14]S. Geisler, R. A. Doan, A. Strickland et al., “Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice,” Brain, vol. 139, no. 12, pp. 3092-3108, 2016.
    [15]V. A. Carozzi et al., “Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies,” Exp. Neurol., vol. 226, no. 2, pp. 301-309, 2010.
    [16]G. Cavalett, G. Tredici, P. Marmiroli, et al., “Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administrationin rats,” Acta Neuropathol., vol. 84, no. 4, pp. 364-371,1992.
    [17]A. A. Argyriou, G. Iconomou, and H. P. Kalofonos, “Bortezomib-induced peripheral neuropathy in multiple myeloma: A comprehensive review of the literature,” Blood, vol. 112, no. 5, pp. 1593-1599, 2008.
    [18]P. G. Richardson, T. Hideshima, and K. C. Anderson, “Bortezomib (PS-341): A Novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers,” Cancer Control, vol. 10, no. 5, pp. 361-369, 2003.
    [19]張淑華, 何政坤, 蔡錦瑩, "台灣紅豆杉之細胞培養與紫杉烷類生產, " 台灣林業科學 19卷1期, 43-52頁, 2004。
    [20]C. Khanna, M. Rosenberg, and D. M. Vail, “A review of paclitaxel and novel formulations including those suitable for use in dogs,” J. Vet. Intern. Med., vol. 29, no. 4, pp. 1006-1012, 2015.
    [21]P. B. Schiff, J. Fant, S. B. Horwitz, “Promotion of microtubule assembly in vitro by taxol,” Nature, vol. 277, no. 5698, pp. 665-667, 1979.
    [22]D. A. Fuchs and R. K. Johnson, “Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison,” Cancer Treat Rep., vol. 62, no. 8, pp. 1219-22, 1978.
    [23]P. B. Schiff and S. B. Horwitz, “Taxol stabilizes microtubules in mouse fibroblast cells,” Proc. Natl. Acad. Sci. USA, Vol. 77, No. 3, pp. 1561-1565, 1980.
    [24]W. Herth, “Taxol Effects Cytoskeletal Microtubules, Flagella and Spindle Structure of the Chrysoflagellate Alga Poterioochromonas,” Protoplasma, vol. 115, pp. 228-239, 1983.
    [25]M. A. Jordan, R. J. Toso, D. Thrower, and L. Wilson, “Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations,” Proc. Natl. Acad. Sci., vol. 90, no. 20, pp. 9552-9556, 2006.
    [26]A. Bershadsky, M. Kozlov, and B. Geiger, “Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize,” Curr. Opin. Cell Biol., vol. 18, no. 5, pp. 472-481, 2006.
    [27]D. Tambe et al., “Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness,” PLoS One, vol. 4, no. 5, p. e5486, 2009.
    [28]D. E. Ingber, “Mechanobiology and diseases of mechanotransduction,” Ann. Med., vol. 35, no. 8, pp. 564-577, 2003.
    [29]D. A. Affonce and K. R. Lutchen, “New Perspectives on the Mechanical Basis for Airway Hyperreactivity and Airway Hypersensitivity in Asthma,” J. Appl. Physiol., vol. 101, no. 6, pp. 1710-1719, 2006.
    [30]J. Klein-Nulend, R. G. Bacabac, J. P. Veldhuijzen, and J. J. Van Loon, “Microgravity and Bone Cell Mechanosensitivity,” Adv. Space Res., vol. 32, no. 8, pp. 1551-1559, 2003.
    [31]M. A. Vollrath, K. Y. Kwan, and D. P. Corey, “The micromachinery of mechanotransduction in hair cells,” Ann. Rev. Neurosci., vol. 30, pp. 339-365, 2007.
    [32]M. A. Jr. Gimbrone, J. N. Topper, T. Nagel, K. R. Anderson and G. Garcia-Cardena, “Endothelial dysfunction, hemodynamic forces, and atherogenesis,” Ann. NY Acad. Sci., vol. 902, pp. 230-239, 2000.
    [33]M. J. Paszek et al., “Tensional homeostasis and the malignant phenotype,” Cancer Cells, vol. 8, no.3, pp. 241-254, 2005.
    [34]S. Judex, T. S. Gross, R. C. Bray, and R. F. Zernicke, “Adaptation of bone to physiological stimuli,” J. Biomech., vol. 30, no.5, pp. 421-429, 1997.
    [35]J. C. Tan, F. B. Kalapesi, and M. T. Coroneo, “Mechanosensitivity and the eye: cells coping with the pressure,” Br. J. Ophthalmol., vol. 90, no. 3, pp. 383-388, 2006.
    [36]M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, “Review on cell mechanics: experimental and modeling approaches,” Appl. Mech. Rev., vol. 65, no. 6, p. 060801, 2013.
    [37]K. S. Kim, C. H. Cho, E. K. Park, M. H. Jung, K. S. Yoon, and H. K. Park, “AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells,” PLoS One, vol. 7, no. 1, p. e30066, 2012.
    [38]K. Hayashia, M. Iwata, “Stiffness of cancer cells measured with an AFM indentation method,” ELSEVIER, Vol. 49, pp. 105-111, 2015.
    [39]Y. Nematbakhsh, K. T. Pang, and C. T. Lim, “Correlating the viscoelasticity of breast cancer cells with their malignancy,” Converg. Sci. Phys. Oncol., vol. 3, no. 3, p. 034003, 2017.
    [40]周辰, "紫杉醇引發PC-12類神經細胞病變之生物力學及形態學研究, "國立成功大學機械工程學系碩士論文, 2016.
    [41]林慶政, "紫杉醇於臨床施打計畫下對PC-12類神經細胞形態與黏彈性力學之影響, "國立成功大學機械工程學系碩士論文, 2017.
    [42]J. V. Méndez-Méndez, M. T. Alonso-Rasgado, E. C. Faria, E. A. Flores-Johnson, and R. D. Snook, “Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids,” Micron, vol. 66, pp. 37-46, 2014.
    [43]N. Gavara, “Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells,” Sci. Rep., vol. 6, pp. 1-13, 2016.
    [44]I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., vol. 3, no. 1, pp. 47-57, 1965.
    [45]N. Nijenhuis, X. Zhao, A. Carisey, C. Ballestrem, and B. Derby, “Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells,” Biophys. J., vol. 107, no. 7, pp. 1502-1512, 2014.
    [46]L. Gianni et al., “Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans,” J. Clin. Oncol., vol. 13, no. 1, pp. 180-190, 1995.
    [47]J. B. Christen and A. G. Andreou, “Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation,” IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 1, pp. 3-18, 2007.
    [48]S. Petronis, M. Stangegaard, C. B. V. Christensen, and M. Dufva, “Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion,” Biotechniques, vol. 40, no. 3, pp. 368-376, 2006.
    [49]J. L. Lin, M. H. Wu, C. Y. Kuo, K. D. Lee, and Y. L. Shen, “Application of indium tin oxide (ITO)-based microheater chip with uniform thermal distribution for perfusion cell culture outside a cell incubator,” Biomed. Microdevices, vol. 12, no. 3, pp. 389-398, 2010.
    [50]高御豪, "紫杉醇藥物動力學對背根神經節神經元型態與黏彈性之影響, "國立成功大學機械工程學系碩士論文, 2019.
    [51] D. A. Sholl, “Dendritic organization in the neurons of the visual and motor cortices of the cat,” J. Anat., vol. 87, no. 4, pp. 387-406, 1953.
    [52]K. M. O’Neill, B. F. Akum, S. T. Dhawan, M. Kwon, C. G. Langhammer, and B. L. Firestein, “Assessing effects on dendritic arborization using novel Sholl analyses,” Front. Cell. Neurosci., vol. 9, no. July, pp. 1-14, 2015.
    [53]K. M. Kim, K. Son, and G. T. R. Palmore, “Neuron image analyzer: Automated and accurate extraction of neuronal data from low quality images,” Sci. Rep., vol. 5, no. May, pp. 1-12, 2015.
    [54]R. Mônica et al., “A simple method to measure cell viability in proliferation and cytotoxicity assays MSc, Graduate Student – Graduate Program in A simple method to measure cell viability in proliferation and cytotoxicity assays,” Braz. oral res., vol. 2323, no. 33, pp. 255-262, 2009.
    [55]C. F. Quate, Ch. Gerber, and G. Binnig, “Atomic Force Microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
    [56]K. M. Wozniak et al., “Comparison of neuropathy-inducing effects of eribulin mesylate, paclitaxel, and ixabepilone in mice,” Cancer Res., vol. 71, pp. 3952-3962, 2016.
    [57]E. L. Gornstein, “Neurotoxic Mechanisms of the Chemotherapeutic Paclitaxel,” Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences, 2016.
    [58]A. A. Argyriou, M. Koltzenburg, P. Polychronopoulos, S. Papapetropoulos, H. P. Kalofonos,” Peripheral nerve damage associated with administration of taxanes in patients with cancer,” Critical Reviews in Oncology and Hematology, vol. 66, no. 3, pp. 218-228, 2008.
    [59]T. Ohtsu, Y. Sasaki et al,” Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion,” Clinical Cancer Res., vol. 1, no. 6, pp. 599-606,1995.
    [60]N. C. Kampan et al,” Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer,” BioMed Research International, vol. 2015, p. 21, 2015.
    [61]E. A. Eisenhauer et al,” European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion, ”Journal of Clinical Oncology, vol. 12, no. 12, pp. 2654-2665, 1994.
    [62]T. Peretz, A. Sulkes et al.,” 345 A multicenter, randomized study of two schedules of paclitaxel (PTX) in patients with advanced breast cancer (ABC),” European Journal of Cancer, vol. 31, p. S75, 1995.
    [63]C. Tate, ” Paclitaxel: Infusion Duration Effect on Toxicity and Efficacy, ” Cancer Control, vol. 2, no. 1, pp. 58-61, 1995.
    [64]R. B. Raffa, R. Langford et al.,” Chemotherapy-Induced Neuropathic Pain,” CRC Press, 1st Edition, pp. 124-125, 2012.
    [65]A. J. Coldman, J. H. Goldie, “Impact of dose-intense chemotherapy on the development of permanent drug resistance,” Seminars in Oncology, vol. 14, no. 4, pp. 29-33, 1987.
    [66]R. Simon, L. Norton, “The Norton-Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens,” Nat. Clin. Pract. Oncol., vol. 3, no. 8, pp. 406-407, 2006.
    [67]Y. F. Chen and L. H. Chen et al., “Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy,” Sci. Rep., vol. 7, p. 45366, 2017.
    [68]M. Yayla and Damla Çetin et al., “Protective Effects of Pomegranate Peel Extract on Paclitaxel Induced Primary Neuron Damage in Rats,” Kafkas Journal of Medical Sciences, vol. 8, pp. 149-157, 2018.
    [69]C. Wing and M. Komatsu et al., “Application of Stem Cell Derived Neuronal Cells to Evaluate Neurotoxic Chemotherapy,” Stem Cell Research, vol. 22, pp. 79-88, 2017.

    下載圖示 校內:2024-07-04公開
    校外:2024-07-04公開
    QR CODE