簡易檢索 / 詳目顯示

研究生: 王馨專
Wang, Hsing-Chuan
論文名稱: 口腔癌腫瘤壞死因子受體表觀基因體DNA甲基化調控異常與研究
Epigenetic DNA Methylation Dysregulation of Tumor Necrosis Factor Receptor in Oral Cancer
指導教授: 黃則達
Huang, Tze-Ta
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 口腔癌焦磷酸定序腫瘤壞死因子受體DNA甲基化
外文關鍵詞: oral cancel, pyrosequencing, DNA methylation, TNFR
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔癌是全球常見癌症的第六名,更是我國男性惡性癌症中排名第四名的癌症,平均死亡年齡為54歲,其造成的主因與吸菸、喝酒、嚼檳榔的習慣具有關連性。經統計顯示,早期診斷治療能有效提高患者的存活率。目前的篩檢方式是以目視或觸診,其診斷結果的準確性不高,而準確性較高的組織切片檢查,則是需進行手術侵入式檢測。近幾年,隨著次世代定序的發展,已有研究指出,其表觀基因體修飾DNA甲基化與口腔癌的腫瘤生成,造成癌症相關。因此, DNA甲基化有可能可以做為早期檢測口腔癌的生物標記。TNFRSF10C基因是細胞凋亡誘導配體誘導型受體的一種,在許多癌症中其啟動子的CG島呈現高度甲基化,如大腸癌、肺癌、前列腺癌等等[1]。故本研究想了解在口腔癌中TNFRSF10C基因的 DNA甲基化狀態與口腔癌之關係。利用焦磷酸定序技術去偵測分析其基因在口腔癌細胞株與病人組織檢體中甲基化的情形。其結果顯示,在口腔癌細胞株中,TNFRSF10C基因甲基化程度不一,且其mRNA與蛋白質的表現,受到DNA甲基化程度影響。在口腔癌及癌前病變的病人組織檢體中,則觀察到正常組織檢體的甲基化現象比癌化組織的檢體甲基化現象明顯較高。因此推論在口腔癌中TNFRSF10C基因甲基化降低可能是參與口腔癌癌化過程,使基因扮演致癌基因的角色。

    oral cancer is the sixth most common cancer in worldwide. In Taiwan, it is also the fourth common of male malignant disease. Recently, with the development of next generation sequencing, the dysregulation of gene expression is a frequent occurrence in oral cancer, and the epigenetic modifications of aberrant DNA methylation in oral cancer tumorigenesis have been revealed. Therefore, the pyrosequencing assay was used to evaluate the significance of methylation level in oral cancer cell lines and patient’ tissue samples. The different methylation status of TNFRSF10C gene in oral cancer cell lines were revealed, and related to the expression of mRNA level. We analyzed the patients’ tissue samples, and found the normal tissue samples methylation level was higher than the cancer tissue samples with statistically significant difference. We conclude that the hypermethylation of TNFRSF10C gene in oral cancer cell line could induce low expression of TNFRSF10C. In clinical samples, the methylation level of the normal oral mucosa tissue was higher oral cancer. These results suggested that TNFRSF10C gene might be the oncogene in oral cancer carcinogenesis.

    中文摘要 Ⅰ 英文延伸摘要 Ⅱ 致謝 Ⅵ 目錄 Ⅶ 圖目錄 X 表目錄 ⅩI 第一章 緒論 1 一、 口腔癌(oral cancer) 1 二、 表觀遺傳調控(epigenetic regulation) 2 三、 DNA甲基化(DNA methylation) 3 四、 DNA 甲基化與癌症的關係(the relationship of DNA methylation and cancer) 4 五、 腫瘤壞死因子受體超級家族(tumor necrosis factor receptor superfamily) 5 六、 焦磷酸定序(pyrosequencing) 6 七、 研究動機 9 第二章 實驗材料與方法 10 一、 細胞培養(Cell culture) 10 (1) 解凍細胞(Thawing cells) 10 (2) 繼代培養(Subculture) 12 (3) 冷凍保存細胞(Freezing cells) 12 (4) 細胞計數(Cell counting) 13 二、 分析DNA 甲基化調控之相關實驗 14 (1) DNA 萃取-細胞株(DNA extraction-cell line) 14 (2) DNA萃取-檢體(DNA extraction-tissue) 16 (3) 亞硫酸鹽轉換(Bisulfite Conversion) 17 (4) 引子設計(Primer design) 18 (5) 聚合酶連鎖反應(Polymerase Chain Reaction) 18 (6) 洋菜膠體電泳分析(Agarose gel electrophoresis) 20 (7) 焦磷酸定序(Pyrosequencing) 20 三、 RNA表現量之分析 22 (1) RNA純化(RNA Purification) 22 (2) 反轉錄酶反應(Reverse Transcription PCR) 23 (3) 即時定量PCR(Real-time PCR) 25 四、 蛋白質表現量之分析 27 (1) 蛋白質萃取(protein extraction) 27 (2) 蛋白質濃度測定(Protein assay) 28 (3) SDS-PAGE蛋白質電泳(SDS-PAGE protein electrophoresis) 28 (4) 西方墨點法(Western blot) 30 五、 統計分析(Statistics methods) 32 第三章 實驗結果 33 一、 分析癌細胞株中TNFRSF10C基因的DNA甲基化情形 33 二、 在癌細胞株中TNFRSF10C基因mRNA的表現量情形 34 三、 在癌細胞株中TNFRSF10C基因蛋白質的表現量情形 34 四、 在臨床檢體中TNFRSF10C基因DNA甲基化的情形 35 第四章 討論 38 第五章 結論 42 參考文獻 43 圖表 48 補充資料 60

    1. Cai, H.H., et al., Aberrant methylation frequency of TNFRSF10C promoter in pancreatic cancer cell lines. Hepatobiliary Pancreat Dis Int, 2011. 10(1): p. 95-100.
    2. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-386.
    3. Department of Health, E.Y., R.O.C.(TAIWAN), 2016 Statistics of Causes of Death. 2017: Taipei, Taiwan. www.mohw.gov.tw/dl-33686-f713f1fb-bd64-4c0d-a810-cefabef4cb2e.html.
    4. Werning, J.W., Oral cancer: diagnosis, management, and rehabilitation. 2007: Thieme Medical Publishers New York:.
    5. Warnakulasuriya, S., Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009. 45(4-5): p. 309-316.
    6. Chen, C.L., et al., Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis, 1999. 20(12): p. 2331-2334.
    7. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-453.
    8. Ongole, R. and B. Praveen, Textbook of oral medicine, oral diagnosis and oral radiology. 2014: Elsevier Health Sciences.
    9. Edge, S., et al., AJCC cancer staging manual 2010. 7th edth ed. 2010, New York: Springer.
    10. Spector, T., Identically different: why you can change your genes. 2012: Hachette UK.
    11. Bird, A., Perceptions of epigenetics. Nature, 2007. 447(7143): p. 396-398.
    12. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-428.
    13. Feng, S., S.E. Jacobsen, and W. Reik, Epigenetic reprogramming in plant and animal development. Science, 2010. 330(6004): p. 622-627.
    14. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-257.
    15. Li, E., T.H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992. 69(6): p. 915-926.
    16. Larsen, F., et al., CpG islands as gene markers in the human genome. Genomics, 1992. 13(4): p. 1095-1107.
    17. Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. Journal of molecular biology, 1987. 196(2): p. 261-282.
    18. Hendrich, B. and A. Bird, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol, 1998. 18(11): p. 6538-6547.
    19. Nakao, M., Epigenetics: interaction of DNA methylation and chromatin. Gene, 2001. 278(1-2): p. 25-31.
    20. Issa, J.P., CpG island methylator phenotype in cancer. Nat Rev Cancer, 2004. 4(12): p. 988-993.
    21. Yang, A.S., et al., A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. 2004. 32(3): p. e38.
    22. Issa, J.P. and N. Ahuja, Aging, methylation and cancer. Histology and histopathology, 2000. 15(3): p. 835-842.
    23. Howard, G., et al., Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene, 2008. 27(3): p. 404-408.
    24. Kulkarni, V. and D. Saranath, Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncology, 2004. 40(2): p. 145-153.
    25. Saatci, C., et al., Detection of p16 promotor hypermethylation in "Maras powder" and tobacco users. Cancer Epidemiology, 2009. 33(1): p. 47-50.
    26. Takeshima, M., et al., High frequency of hypermethylation of p14, p15 and p16 in oral pre-cancerous lesions associated with betel-quid chewing in Sri Lanka. Journal of Oral Pathology and Medicine, 2008. 37(8): p. 475-479.
    27. Banner, D.W., et al., Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993. 73(3): p. 431-445.
    28. Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501.
    29. Degli-Esposti, M.A., et al., Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med, 1997. 186(7): p. 1165-70.
    30. Ashkenazi, A., Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer, 2002. 2(6): p. 420-30.
    31. Sheridan, J.P., et al., Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science, 1997. 277(5327): p. 818-21.
    32. Pan, G., et al., An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL. Science, 1997. 277(5327): p. 815-818.
    33. Cai, H.H., et al., Aberrant methylation frequency of TNFRSF10C promoter in pancreatic cancer cell lines. Hepatobiliary Pancreat Dis Int, 2011. 10(1): p. 95-100.
    34. Shivapurkar, N., et al., Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer, 2004. 109(5): p. 786-92.
    35. van Noesel, M.M., et al., Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res, 2002. 62(7): p. 2157-61.
    36. Michalowski, M.B., et al., Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet, 2006. 166(1): p. 74-81.
    37. Metzker, M.L., Sequencing technologies—the next generation. Nature reviews genetics, 2010. 11(1): p. 31-46.
    38. Ahmadian, A., M. Ehn, and S. Hober, Pyrosequencing: history, biochemistry and future. Clin Chim Acta, 2006. 363(1-2): p. 83-94.
    39. Clarke, S.C., Pyrosequencing: nucleotide sequencing technology with bacterial genotyping applications. Expert Rev Mol Diagn, 2005. 5(6): p. 947-953.
    40. Wang, L., R. Luhm, and M. Lei, SNP and mutation analysis, in Microarray Technology and Cancer Gene Profiling. 2007, Springer. p. 105-116.
    41. Ronaghi, M., Pyrosequencing sheds light on DNA sequencing. Genome research, 2001. 11(1): p. 3-11.
    42. Shames, D.S., J.D. Minna, and A.F. Gazdar, Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer letters, 2007. 251(2): p. 187-198.
    43. Gasche, J.A. and A. Goel, Epigenetic mechanisms in oral carcinogenesis. Future Oncol, 2012. 8(11): p. 1407-1425.
    44. Mascolo, M., et al., Epigenetic disregulation in oral cancer. Int J Mol Sci, 2012. 13(2): p. 2331-2353.
    45. Huang, T.T., et al., Epigenetic deregulation of the anaplastic lymphoma kinase gene modulates mesenchymal characteristics of oral squamous cell carcinomas. Carcinogenesis, 2013. 34(8): p. 1717-1727.
    46. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007. 8(4): p. 286-298.
    47. Richtig, G., et al., Function and Clinical Implications of Long Non-Coding RNAs in Melanoma. Int J Mol Sci, 2017. 18(4).
    48. Noguchi, S., et al., MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett, 2011. 307(2): p. 211-220.
    49. Shimizu, T., et al., Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol, 2013. 63(6): p. 1091-1100.
    50. Jiang, X., et al., DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell, 2008. 13(6): p. 529-541.
    51. Van De Voorde, L., et al., DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res, 2012. 751(2): p. 304-325.
    52. Nowsheen, S., et al., Epigenetic inactivation of DNA repair in breast cancer. Cancer Lett, 2014. 342(2): p. 213-222.
    53. Liloglou, T., et al., Epigenetic biomarkers in lung cancer. Cancer Lett, 2014. 342(2): p. 200-212.
    54. Van Neste, L., et al., The epigenetic promise for prostate cancer diagnosis. Prostate, 2012. 72(11): p. 1248-1261.
    55. Fu, S., et al., DNA methylation/hydroxymethylation in melanoma. Oncotarget, 2017.
    56. Gloss, B.S. and G. Samimi, Epigenetic biomarkers in epithelial ovarian cancer. Cancer Lett, 2014. 342(2): p. 257-263.
    57. Carvalho, A.L., et al., Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin Cancer Res, 2008. 14(1): p. 97-107.
    58. Worsham, M.J., et al., Delineating an epigenetic continuum in head and neck cancer. Cancer Lett, 2014. 342(2): p. 178-184.
    59. Li, Y.F., et al., DNA methylation profiles and biomarkers of oral squamous cell carcinoma. Epigenetics, 2015. 10(3): p. 229-236.
    60. Schussel, J., et al., EDNRB and DCC salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions. Clin Cancer Res, 2013. 19(12): p. 3268-3275.
    61. Al-Kaabi, A., et al., p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. Dis Markers, 2014. 2014: p. 260549.
    62. Ruiz de Almodovar, C., et al., Transcriptional regulation of the TRAIL-R3 gene. Vitam Horm, 2004. 67: p. 51-63.
    63. Cheng, Y., et al., Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer. Prostate, 2009. 69(3): p. 327-335.
    64. Hornstein, M., et al., Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics, 2008. 5(2): p. 123-136.
    65. Labovsky, V., et al., Prognostic significance of TRAIL-R3 and CCR-2 expression in tumor epithelial cells of patients with early breast cancer. BMC Cancer, 2017. 17(1): p. 280.
    66. Ganten, T.M., et al., Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med (Berl), 2009. 87(10): p. 995-1007.
    67. Tanenbaum, D.G., et al., TNFRSF10C copy number variation is associated with metastatic colorectal cancer. Journal of Gastrointestinal Oncology, 2016. 7(3): p. 306-314.
    68. Granci, V., et al., Prognostic significance of TRAIL-R1 and TRAIL-R3 expression in metastatic colorectal carcinomas. Eur J Cancer, 2008. 44(15): p. 2312-2318.
    69. Buck-Koehntop, B.A. and P.A. Defossez, On how mammalian transcription factors recognize methylated DNA. Epigenetics, 2013. 8(2): p. 131-137.
    70. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38.
    71. Jin, J., et al., The effects of cytosine methylation on general transcription factors. Sci Rep, 2016. 6: p. 29119.
    72. van Noesel, M.M., et al., Tumor-specific Down-Regulation of the Tumor Necrosis Factor-related Apoptosis-inducing Ligand Decoy Receptors DcR1 and DcR2 Is Associated with Dense Promoter Hypermethylation. Cancer Research, 2002. 62(7): p. 2157-2161
    73. Lee, C.H., et al., IL-1beta promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol, 2015. 230(4): p. 875-84.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE