| 研究生: |
吳增昕 Wu, Tseng-hsin |
|---|---|
| 論文名稱: |
表面改質技術應用於梯度表面之冷凝熱傳實驗 Heat Transfer by using Surface Energy Patterning Techniques on Gradient Surface |
| 指導教授: |
呂宗行
Leu, Tzong-shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 十二烷硫醇 、親疏水梯度表面 、冷凝熱傳 、表面改質 |
| 外文關鍵詞: | surface modification technique, condensation heat transfer, surface tension gradient, self-assembled monolayer |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電製程中的黃光微影技術配合十二烷硫醇表面改質技術,製作出表面自由能梯度的表面。不同表面自由能梯度表面的冷凝板,配合本研究所設計的冷凝實驗系統,探討各種冷凝板之熱傳效率。本研究目的為利用表面自由能梯度具有驅動液滴的機制,以達到提升冷凝熱傳的效率。並以理論推導出液滴在垂直表面上移動前的最大尺寸。
本研究使用矽晶片(wafer)作為冷凝板之基材,在矽晶片表面上製作出不同的黃金梯度表面,經過十二烷硫醇改質後,便能產生各種不同表面自由能梯度的冷凝板。上述之梯度冷凝板及親、疏水均質的冷凝板經過本研究所設計之冷凝系統量測其熱通量後,發現梯度表面中具有比較好熱傳效率的冷凝板,會比全親水表面冷凝板的熱傳效果約高出10%,表示本研究所設計之梯度表面對於冷凝熱傳量的確有提升的效果。在均質冷凝板的部份,疏水表面會比親水表面有較好的熱傳效果,且冷凝腔體中的壓力不會影響此結果。液滴移動前最大尺寸的理論推導結果,與本實驗所觀察到的結果相近,也顯示出表面張力能有效影響液滴移動的範圍。藉由此研究的結果,相信對於未來冷凝熱傳的領域能有所幫助。
This research studies the improvement of condensation heat transfer efficiency on a free energy gradient condensation surface. Different from previous studies, the condensation surface is fabricated by using photolithography technique, as well as 1-Dodecaneethoil self-assembly monolayer (SAM) surface modification technique. To test gradient condensation surface, a vertical condensation system is designed in this study. Different gradient condensation surfaces, as well hydrophilic and hydrophobic surfaces, are investigated their condensation heat transfer efficiency by directly measuring the heat flux in the system. Experimental results find that the gradient condensation surface with contact angle gradient dθ/dx=? degree/mm has the best performance above all the surfaces. Its heat transfer efficiency can be 10% higher than the pure silicon hydrophilic surface. The mechanism for the optimal contact angle gradient is also studied by both theoretical and experimental methods. A theoretical analysis is performed to estimate the minimum droplet size that can move on a vertical gradient surface. It finds a good agreement between the theoretical prediction and the experimental results. This verifies the theoretical model can well explain the physics behind the current research. Based on the theoretical model, a length scale L, defined as where r, and g represent the liquid surface tension coefficient, liquid density and gravity, is found. When the gradient surface length scale C is much higher than the length scale L, the system can be considered as an only gravity driven system. Droplet size that will move on the vertical surface is controlled by the balance between the gravity force and contact angle hysteresis force. When the length scale C of the gradient surface is smaller than the length scale L, the surface tension gradient driven force start to show effects. It is found that C=1mm gradient surface can cause smaller droplets to moveand it is believed this is the major mechanism responsible for the better heat transfer effiency.
【1】國立成功大學碩士論文,林佳德,“正丁醇蒸氣在無機 與有機甘露糖奈米微粒上之非均勻向核凝”,民國93年8月
【2】Volmer.M,and Weber.A,Z.Physik.Chem.(Leipzig) 119 227(1926)
【3】S.Twomey,“Experiment test of the Volmer theory of heaterogeneous nucleation ”J.Chem.Phys,30,941,(1959)
【4】N.H.Fletcher,“Size effect in heaterogeneous nucleation”J.Chem.Phys,29,3,572-576,(1958)
【5】Knudsen,M,“Cosin Law in kinetic theory of gases”,Ann.Physik,48,p1113,(1916)
【6】Wood.R.W,“Experimental determination of law of reflection of gas molecules”,30,300-304,1915
【7】Jin Sheng Sheu,Jer Ru Maa,and Joseph L.Katz,“Adsorption and nucleation on smooth surfaces”J.Stati.Phys,52, 1143-1154(1988)
【8】Daniel.Susan,Manoj K.Chaudhury,John C.Chen,“Fast drop movements resulting from the phase change on a gradient surface”,Science,291,633-636, 2001
【9】Wasan.D.T,Nikolov.A.D,and Brenner.H,“Fluid dynamics:droplets speeding on surfaces”,Science ,291, 605-606, 2001
【10】Hiroaki.O,Kiyoshi.M,and Isao.S,“Three-dimensional micro-self-assemble using hydrophobic interaction controlled by self-assembled monolayers”,J. Microelectromech.Syst,vol.13,603-611(2004)
【11】國立成功大學碩士論文,蔡欣怡,“金基材之再利用-以表面氧化法進行金基材上自我聚集單分子層之移除”民國92年6月
【12】Shih.K.F,Peter.P.G,Chang.J.K,“EWOD driving of droplet on NxM grid using single-layer electrode patterns”,Solid-State Sensor,Actuator and Microsystems Workshop Hilton Head Island,South Carolina,June 2-6,2002
【13】Christian.G,Aranzazu.d.C,Eduard.A,“Adhesion of bioinspired micropatterned surfaces︰effects of pillar radius,aspect ratio ,and preload, Langmuir, 23, 3495-3502, 2007
【14】Koji.T,Tatsuya.I,Kunihito.N,Yasuyuki.T,and Tanermasa. A“Simple fabrication of hydrophobic surface for high-temperature microsystems”,7th international conference onminiaturized chemical and biochemical analysis systems,503-506,(2003)
【15】Yi.T,and Masayoshi.E,“Macroporous silicon-based deep anisotropic etching”, J.Micromech.Microeng. 15, 764-770 (2005)
【16】M.K.Chaudhury and .M.Whitesides,Science,256,1539,(1992)
【17】H.Zhao and D.Beysence,Langmuir,11,627,(1995)
【18】H.Elwing,Askenda.and l.Lundstrom,Prog.coll. Polym.Sci. 74(1987)103
【19】H.Elwing,S.Welin,A.Askendal,U.Nilsson and J.Coll.Interf. Sci.74(1987)103
【20】H.Elwing,S.Welin,A.Askendal,and l.Lundstrom, J.Coll. Interf.Sci.123(1988)306
【21】Kunihiro Ichimura,Sang-Keun Oh,Masaru Nakagawa, “Liquid-Driven motion of liquids on photoresponsive surface”,Science,vol.288,PP.1624-1626,2000
【22】John P,Longtin,Kunio Hilikata,Kuniyast Ogawa,“Laser- inducedsurface-tension-driven flows in liquids”, Journal of heat transfer,PP.85-93,1998
【23】國立成功大學碩士論文,林宏文,“表面改質技術及應用在冷凝熱傳之實驗探討”,民國94年7月
【24】Wenzel,R.N,1936,“Resistance of solid surfaces to wetting by water”,Industrial and Engineering Chemistry, Vol.28,PP988-994
【25】Cassie,A.B.D.and Baxter,S,1944,“Wettability of porous surfaces”,Transactions of the Faraday Society,Vol,40, pp.546-551
【26】陳進成,“雲、雨、霧的形成”科學發展專題報導,377期,2004年5月
【27】Courtney,W.G,“Recent advances in condensation and evaporation”,ARS Journal,June,p751(1961)
【28】國立成功大學碩士論文,李象山,“水蒸氣滴式冷凝之研究”民國86年6月
【29】國立成功大學碩士論文,方聰賢,“固體表面濕潤性與滴式冷凝之研究”民國85年6月
【30】Susan Daniel and Manoj.K.Chaudhury,“Rectified motion of liquid drops on gradient surfaces induced by vibration” , Langmuir.2002,18,3404-3407
【31】F.Brochard,“Motion of droplets on solid surfaces induced by chemical or thermal gradients”,Langmuir,1989,5 432-438