簡易檢索 / 詳目顯示

研究生: 陳佶亨
Chen, Chi-Heng
論文名稱: 磁控濺鍍製作奈米結構氧化鋅發光二極體之研究
ZnO-based Light Emitting Device with sputtering ZnO nanocrystal
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 氧化鋅氮化鎵異質結構奈米粒子發光元件電激發光頻譜穿隧式電子顯微鏡
外文關鍵詞: ZnO, GaN, heterojunction, nanoparticles, light-emtting device, EL, TEM
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以具奈米結構之氧化鋅和二氧化矽混合層(ZnO-SiO2 nanocomposite)作為發光二極體(Light emitting diode,LED)元件之發光層,並與氧化鋅(Zinc oxide,ZnO)作為發光層之元件相互比較光電特性之差異。
    本論文藉由共濺鍍法(Co-sputter)製作具奈米結構之氧化鋅和二氧化矽混合層(ZnO-SiO2 nanocomposite),並與p型氮化鎵(p-GaN)和摻鎵元素之n型氧化鋅(n-ZnO:Ga,GZO)製作為p-i-n異質結構之發光二極體。藉由電激發光(Electroluminescence,EL)量測顯示,此元件於9 mA電流注入情況下具有376 nm之發光頻譜,並且經由穿隧式電子顯微鏡(Transmittance electron microscopy,TEM)之拍攝結果得知,氧化鋅奈米粒子(ZnO nanoparticles)徑粒分佈於3 nm至7 nm之間。另外,本論文針對於具奈米結構之氧化鋅和二氧化矽混合層(ZnO-SiO2 nanocomposite)進行雷射熱處理,以此提升氧化鋅奈米粒子(ZnO nanoparticles)之結晶性,進而增強氧化鋅奈米粒子(ZnO nanoparticles)之發光強度和抑制氧化鋅(ZnO)內氧缺陷之黃光頻譜強度。

    In this research, we used ZnO-SiO2 nanocomposite as the light emitting layer in light-emitting device and researched the electro-optical characteristic of this device. Furthermore, we compared this device to the other ZnO structure devices in electro-optical characteristic.
    We fabricated ZnO-SiO2 nanocomposite by co-sputter and sandwiched this layer by p-GaN and n-ZnO:Ga(GZO) to realize p-i-n heterojunction structure light-emitting device. Operating at 9 mA current injection, this device exhibited 376 nm emission peak in the electroluminence(EL) spectrum. By transmittance electron microscopy(TEM) measurement, the diameter of ZnO nanoparticles in ZnO-SiO2 nanocomposite was in the range of 3-7 nm. Moreover, we used the nanosecond pulse laser to anneal ZnO-SiO2 nanocomposite layer at the same time. We improved the ZnO crystal quality, and then enhancing light emitting intensity of ZnO nanoparticles and decreasing the yellow band emission which came from oxygen vacancies of ZnO inside the ZnO-SiO2 nanocomposite by laser anneal treatment.

    摘要 I Abstract III 致謝 IV 目錄 VI 表目錄 IX 圖目錄 X 第一章 序論 1 1-1 氧化鋅之材料介紹 2 1.2 氧化鋅發光二極體之演變 3 1.3 氧化鋅奈米點之發展 6 1.4 研究動機 7 1.4-1 實驗方式 8 1.4-2 實驗目的 9 參考文獻 14 第二章 理論基礎 17 2-1 發光二極體之原理 17 2-1.1 二極體之介紹 17 2-1.2 發光二極體之載子注入與發光機制 18 2-2 氧化鋅量子點之原理 20 2-3 製程與量測機台之原理 23 2-3.1 濺鍍原理 23 2-3.2 雷射熱處理原理 26 2-3.3 電激發光光譜原理 28 2-3.4 穿隧式電子顯微鏡原理 30 2-3.5 穿透率量測之原理 32 參考文獻 40 第三章 製程與量測 43 3-1 製程和量測儀器介紹 43 3-2 元件製作流程 46 第四章 實驗結果與討論 56 4-1 元件之電流-電壓特性分析 56 4-1.1 施加順向偏壓之電流-電壓之特性 57 4-1.2 施加逆向偏壓之電流-電壓之特性 57 4-2 元件之電激發光特性分析 58 4-2.1 不同注入電流下元件之電激發光頻譜 58 4-2.2 相同注入下元件之電激發光頻譜 60 4-2.3 亮度-電流之特性分析 62 4-3 元件之穿隧式電子顯微鏡量測 63 4-3.1 穿隧式電子顯微鏡之量測結果 63 4-3.2 氧化鋅粒徑大小之統計 64 4-4 具奈米結構氧化鋅和二氧化矽混合層之能隙寬度分析 65 4-5 激子復合能量位移之計算 66 參考文獻 84 第五章 結論與未來展望 85 5-1 結論 85 5-2 未來展望 87

    第一章:
    [1] G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D: Appl. Phys., vol. 43, 415103, pp. 1-8, Sep. 2010
    [2] J. T. Yan, C. H. Chen, S. F. Yen, and C. T. Lee, “Ultraviolet ZnO nanorod/p-GaN-heterostructured light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 146-148, Feb. 2010
    [3] M. Y. Ke, T. C. Lu, S. C. Yang, C. P. Chen, Y. W. Cheng, L. Y. Chen, C. Y. Chen, J. H. He, and J. J. Huang, “UV light emission from GZO/ZnO/GaN heterojunction diodes with carrier confinement layers,” Opt. Express, vol. 17, no. 25, pp. 22912-22917, Dec. 2009
    [4] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., vol. 91, pp. 231113-1- 231113-3, Dec. 2007
    [5] S. J. Jiao, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, Y. C. Liu, and X. W. Fan, ” Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode,” Phys. Stat. Sol. (c), vol. 3, no. 4, pp. 972-975, Mar. 2006
    [6] 彭立琪,“氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍光發光二極體之研究",國立成功大學光電科學與工程研究所,碩士論文(2007)
    [7] L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. L. Wong, “Highly monodisperse polymer-capped ZnO nanoparticles:Preparation and optical properties,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2901-2903, May 2000
    [8] J. J. Cavaleri, D. E. Skinner, D. P. Colombo, Jr., and R. M. Bowman, “Femtosecond study of the size-dependent charge carrier dynamics in ZnO nanocluster solutions,” J . Chem. Phys., vol. 103, no. 13, pp. 5378-5386, Oct. 1995
    [9] K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3810-3812, May 2004,
    [10] G. Mayer, M. Fonin, U. Rudiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “ The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology, vol. 20, 075601, pp. 1-6, Jan. 2009
    [11] M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M. Shiojiri, “Ultraviolet electroluminescence from n-ZnO–SiO2–ZnO nanocomposite/p-GaN heterojunction light-emitting diodes at forward and reverse bias,” IEEE Photon. Technol. Lett., vol. 20, no. 21, pp. 1772-1774, Nov. 2008
    [12] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes,” IEEE Trans. on Electron Devices, vol. 57, no. 9, pp. 2195-2202, Sep. 2010
    [13] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri, and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol. 20, 165201, pp. 1-8, Mar. 2009
    [14] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Stat. Sol. RRL, vol. 3, no. 2–3, pp. 88-90, Feb. 2009
    [15] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, “p-type conduction in N–Al co-doped ZnO thin films,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3134-3135, Oct. 2004
    [16] M. Ding, D. Zhao, B. Yao, B. Li, Z. Zhang, and D. Shen, “The p-type ZnO film realized by a hydrothermal treatment method,” Appl. Phys. Lett., vol. 98, 062102-1-062102-3, Feb. 2011
    [17] C. T. Lee, Y. H. Lin, L. W. Lai, and L. R. Lou, “Mechanism Investigation of p-i-n ZnO-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 22, no. 1, pp. 30-32, Jan. 2010
    [18] 林育如,“利用共濺鍍法調製多層漸變折射率ZnxSiyO3薄膜以改善氮化鎵發光二極體出光效率”,國立成功大學光電科學與工程研究所,碩士論文(2010)
    [19] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, 071118-1- 071118-3, Feb. 2009
    第二章:
    [1] 施敏 著,黃調元 譯,“半導體元件物理與製程技術(第二版)”,初版,交大出版社(2010)
    [2] D. A. Neamen 著,楊賜麟 譯,“半導體物理與元件”,初版,美商麥格羅.希爾國際股份有限公司(2005)
    [3] B. M. Ataev, Ya. I. Alivova, V. A. Nikitenkob, M. V. Chukichevc, V. V. Mamedov, and S. S. Makhmudov, “n-ZnO/p-GaN/α-Al2O3 heterojunction as a promising blue light emitting system,” J. Optoelectronics and Adv. Mat., vol. 5, no. 4, pp. 899-902, Dec. 2003
    [4] A. M. Ojeda, E. Redondo, G. G. Diaz, and I. Martil, “Analysis of light-emission processes in light-emitting diodes and semiconductor lasers,” Eur. J. Phys., vol. 18, pp. 63-67, 1997
    [5] 白木靖寬、吉田貞史 著,王建義 譯,“薄膜工程學”,第三版,全華圖書股份有限公司(2009)
    [6] 彭立琪,“氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍光發光二極體之研究",國立成功大學光電科學與工程研究所,碩士論文(2007)
    [7] M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M. Shiojiri, “Ultraviolet electroluminescence from n-ZnO–SiO2–ZnO nanocomposite/p-GaN heterojunction light-emitting diodes at forward and reverse bias,” IEEE Photon. Technol. Lett., vol. 20, no. 21, pp. 1772-1774, Nov. 2008
    [8] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes,” IEEE Trans. on Electron Devices, vol. 57, no. 9, pp. 2195-2202, Sep. 2010
    [9] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri, and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol. 20, 165201, pp. 1-8, Mar. 2009
    [10] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Stat. Sol. RRL, vol. 3, no. 2–3, pp. 88-90, Feb. 2009
    [11] Y.Y. Peng, T. E. Hsieh, and C. H. Hsu, “Optical characteristics and microstructure of ZnO quantum dots-SiO2 nanocomposite films prepared by sputtering methods,” Appl. Phys. Lett., vol. 89, pp. 211909-1-211909-3, Nov. 2006
    [12] D. K. Schroder, “Semiconductor material and device characterization,” 3rd edition, a Wiley-interscience publication, 2005
    [13] Y. Kayannuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B, vol. 38, no. 14, pp. 9797-9799, Nov. 1988
    [14] L. E. Brus, ” Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem, Phys., vol. 80, no. 9, pp. 4403-4409, May 1984
    [15] K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3810-3812, May 2004.
    [16] V. A. Fonoberov and A. A. Balandina, “Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5971-5973 , Dec. 2004
    [17] V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B, vol. 70, pp. 195410-1-195410-5, Nov. 2004
    [18] 黃奕凱,“以離子佈植及後續退火製作閃鋅礦氮化銦量子點”,國立成功大學材料科學與工程學系,碩士論文(2006)
    [19] B. Hartiti, A. Slaoui, J. C. Muller, and P. Siffert, “Large diffusion length enhancement in silicon by rapid thermal codiffusion of phosphorus and aluminum,” Appl. Phys. Lett., vol. 63, no.9, pp. 1249-1251, Aug. 1993
    [20] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 9, pp. 1275-1277, Mar. 1999
    第四章:
    [1] M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M. Shiojiri, “Ultraviolet electroluminescence from n-ZnO–SiO2–ZnO nanocomposite/p-GaN heterojunction light-emitting diodes at forward and reverse bias,” IEEE Photon. Technol. Lett., vol. 20, no. 21, pp. 1772-1774, Nov. 2008
    [2] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes,” IEEE Trans. on Electron Devices, vol. 57, no. 9, pp. 2195-2202, Sep. 2010
    [3] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition”, Phys. Stat. Sol. RRL, vol. 3, no. 2–3, pp. 88-90, Feb. 2009
    [4] L. Zhao, C. S. Xu, Y. X. Liu, C. L. Shao, X. H. Li, and Y. C. Liu, “A new approach to white light emitting diodes of p-GaN/i-ZnO/n-ZnO heterojunctions”, Appl. Phys. B, vol. 92, pp. 185-188, Aug. 2008
    [5] 林育如,“利用共濺鍍法調製多層漸變折射率ZnxSiyO3薄膜以改善氮化鎵發光二極體出光效率”,國立成功大學光電科學與工程研究所,碩士論文(2010)

    下載圖示 校內:2014-08-09公開
    校外:2014-08-09公開
    QR CODE