| 研究生: |
柯昊葳 Ke, How-Wei |
|---|---|
| 論文名稱: |
鹵素交換驅動之CsPbBr₃光電容器於整合型太陽能儲能系統之應用研究 Halide Exchange-Driven CsPbBr₃ Photocapacitors for Integrated Photorechargeable Energy Storage Systems |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 整合型太陽能儲能系統 、CsPbBr₃鈣鈦礦 、鹵素交換反應 、光法拉第結 、法拉第過程 、光電容器 、電解液 |
| 外文關鍵詞: | IPRESS, CsPbBr₃ perovskite, halide exchange, photo-Faradaic junction, Faradaic process, photocapacitor, electrolyte |
| 相關次數: | 點閱:136 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著可攜式與自供電物聯網(IoT)設備需求日益增加,亟需一種能夠有效整合太陽能收集與能量儲存的系統。整合型太陽能儲能系統(IPRESS)將光吸收與電化學儲能結合於單一平台,提供一項極具潛力的解決方案。在眾多 IPRESS 技術中,光電容器因可於單一步驟中直接轉換並儲存太陽能而受到高度關注,惟其材料相容性與界面電荷傳輸等挑戰,仍限制其實際應用。
本研究探討全無機鉛鹵化物鈣鈦礦材料,特別是 CsPbX₃(X = Cl、Br 或 I),作為兼具光吸收與儲能功能的雙功能材料。研究重點聚焦於光電法拉第接面所發生的鹵素置換反應機制。於光激發條件下,CsPbBr₃ 與氯化銫(CsCl)電解質發生鹵素置換反應,生成混合鹵素化合物 CsPbBr₍₃₋ₓ₎Clₓ。此一組成調變改變了材料的電子結構,有效提升載子遷移率與太陽能至電化學能的轉換效率。於暗態放電階段,Cl⁻ 具高電負度,促進逆向鹵素置換反應,使 CsPbBr₃ 結構得以恢復,並伴隨儲存電能的自發釋放。
此一由鹵素置換所驅動之動態且可逆的法拉第過程,提供穩定且高效的運作機制。所製備之 CsPbBr₃ 基法拉第光電容器於無需外部充電源的條件下,實現 0.34 mAh/g 的比電容量,展現優異的光電轉換與儲能整合性能。該裝置同時具備高可逆性、簡潔元件結構與穩定電解質界面,顯示其作為高穩定 IPRESS 平台之潛力。
本研究深入闡析鈣鈦礦系統中鹵素置換與光電法拉第機制之運作原理,進一步建立具實用性與穩定性的電解質工程策略,為實現高能效、長循環壽命,並可無縫整合於 IoT 與其他自供電技術之次世代光電整合儲能裝置,奠定關鍵設計基礎。
The growing demand for portable and autonomous Internet of Things (IoT) devices has highlighted the need for efficient systems that integrate solar energy harvesting with energy storage. Integrated photorechargeable energy storage systems (IPRESS), which combine light absorption and electrochemical storage in a unified platform, offer a promising solution. Among various IPRESS candidates, photocapacitors have drawn significant attention due to their ability to directly convert and store solar energy within a single operation. However, challenges related to material compatibility and charge transport across interfaces have limited their widespread application.
This study investigates the use of all-inorganic lead halide perovskites, specifically CsPbX₃ (X = Cl, Br, or I), as dual-functional materials for light harvesting and charge storage. The research focuses on the halide exchange process occurring at the photo-Faradaic junction, where interaction between photoexcited CsPbBr₃ and a cesium chloride electrolyte induces the formation of a mixed-halide compound, CsPbBr(3−x)Clx. This compositional adjustment results in a modified electronic structure that promotes enhanced charge carrier mobility and more efficient solar-to-electrochemical energy conversion. During the dark discharge phase, the high electronegativity of Cl⁻ facilitates a reverse halide exchange reaction, restoring CsPbBr₃ and enabling spontaneous energy release as electrical output.
The dynamic and reversible Faradaic process enabled by halide exchange provides a stable and efficient operational mechanism. The optimized CsPbBr₃-based Faradaic photocapacitor demonstrates a specific capacity of 0.34 mAh/g without requiring an external charging source. The device exhibits high reversibility, a simplified configuration, and a stable electrolyte interface, confirming its potential as a robust IPRESS platform.
This work advances the understanding of halide exchange and photo-Faradaic processes in perovskite systems. It also introduces an effective electrolyte engineering strategy for the design of next-generation photorechargeable energy storage devices with high energy efficiency, long cycling life, and seamless integration into IoT and other self-powered technologies.
[1] A. Midilli, I. Dincer, M. Ay, Green energy strategies for sustainable development, Energy policy 34 (2006) 3623-3633.
[2] A.M. Omer, Green energies and the environment, Renew. Sust. Energ. Rev. 12 (2008) 1789-1821.
[3] S.A. Hussain, F. Razi, K. Hewage, R. Sadiq, The perspective of energy poverty and 1st energy crisis of green transition, Energy 275 (2023) 127487.
[4] X. Liu, N. Ansari, Toward green IoT: Energy solutions and key challenges, IEEE Commun. Mag. 57 (2019) 104-110.
[5] A.M. Bagher, M.M.A. Vahid, M. Mohsen, Types of solar cells and application, American Journal of optics Photonics 3 (2015) 94-113.
[6] S. Sharma, K.K. Jain, A. Sharma, Solar cells: in research and applications—a review, Mater. Sci. Appl. 6 (2015) 1145-1155.
[7] L. Fagiolari, M. Sampò, A. Lamberti, J. Amici, C. Francia, S. Bodoardo, F. Bella, Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors, Energy Storage Mater. 51 (2022) 400-434.
[8] A. Gurung, Q. Qiao, Solar charging batteries: advances, challenges, and opportunities, Joule 2 (2018) 1217-1230.
[9] A. Gouder, B.V. Lotsch, Integrated Solar Batteries: Design and Device Concepts, ACS Energy Lett. 8 (2023) 3343-3355.
[10] T. Miyasaka, T.N. Murakami, The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy, Appl. Phys. Lett. 85 (2004) 3932-3934.
[11] K. Namsheer, C.S. Rout, Photo-powered integrated supercapacitors: a review on recent developments, challenges and future perspectives, J. Mater. Chem. A 9 (2021) 8248-8278.
[12] T. Xiong, X. Zhou, Y. Wang, T. Zhou, R. Huang, H. Zhong, X. Zhang, S. Yuan, Z. Wang, J. Xin, Photo-powered all-in-one energy harvesting and storage fibers towards low-carbon smart wearables, Energy Storage Mater. 65 (2024) 103146.
[13] J.K. Davis, J. George, M. Balachandran, Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications, J. Mater. Sci. (2024) 1-28.
[14] S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photo-rechargeable organo-halide perovskite batteries, Nano Lett. 18 (2018) 1856-1862.
[15] R. Kumar, A. Kumar, P.S. Shukla, G.D. Varma, D. Venkataraman, M. Bag, Photorechargeable hybrid halide perovskite supercapacitors, ACS Appl. Mater. Interfaces 14 (2022) 35592-35599.
[16] J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo‐supercapacitor based on PEDOT modified printable perovskite solar cell, Adv. Mater. Technol. 1 (2016) 1600074.
[17] M. Hussain, M. Rashid, A. Ali, M.F. Bhopal, A. Bhatti, Systematic study of optoelectronic and transport properties of cesium lead halide (Cs2PbX6; X= Cl, Br, I) double perovskites for solar cell applications, Ceram. Int. 46 (2020) 21378-21387.
[18] J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, Light absorption coefficient of CsPbBr3 perovskite nanocrystals, J. Phys. Chem. Lett. 9 (2018) 3093-3097.
[19] J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J.C. Martins, I. Van Driessche, M.V. Kovalenko, Z. Hens, Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals, ACS nano 10 (2016) 2071-2081.
[20] G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths, Nano Lett. 16 (2016) 4838-4848.
[21] Q. Zhang, X. Sun, W. Zheng, Q. Wan, M. Liu, X. Liao, T. Hagio, R. Ichino, L. Kong, H. Wang, Band gap engineering toward wavelength tunable CsPbBr3 nanocrystals for achieving Rec. 2020 displays, Chem. Mater. 33 (2021) 3575-3584.
[22] X. Xu, S. Li, H. Zhang, Y. Shen, S.M. Zakeeruddin, M. Graetzel, Y.-B. Cheng, M. Wang, A power pack based on organometallic perovskite solar cell and supercapacitor, ACS nano 9 (2015) 1782-1787.
[23] L. Bergamini, N. Sangiorgi, A. Gondolini, A. Sanson, CsPbBr3 for photoelectrochemical cells, J. Sol. Energy 212 (2020) 62-72.
[24] C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, H.W. Lee, N.M. Huang, Cesium lead halide inorganic-based perovskite-sensitized solar cell for photo-supercapacitor application under high humidity condition, ACS Appl. Energy Mater. 1 (2018) 692-699.
[25] L. Zhang, J. Miao, J. Li, Q. Li, Halide perovskite materials for energy storage applications, Adv. Funct. Mater. 30 (2020) 2003653.
[26] A. Gaurav, A. Das, A. Paul, A. Jain, B.D. Boruah, M. Abdi-Jalebi, Could halide perovskites revolutionalise batteries and supercapacitors: A leap in energy storage, J. Energy Storage 88 (2024) 111468.
[27] S. Thakur, T. Paul, S. Maiti, K.K. Chattopadhyay, All-inorganic CsPbBr3 perovskite as potential electrode material for symmetric supercapacitor, Solid State Sci. 122 (2021) 106769.
[28] N. Flores-Diaz, F. De Rossi, A. Das, M. Deepa, F. Brunetti, M. Freitag, Progress of photocapacitors, Chem. Rev. 123 (2023) 9327-9355.
[29] Z. Song, Z. Hao, X. Zhang, J. Wu, Progress in photocapacitors: A review, Funct. Mater. Lett. 16 (2023) 2340015.
[30] H.-W. Ke, Y.-S. Fu, I.Y.-Y. Bu, T.-F. Guo, An innovative halide exchange-based electrolyte for direct solar energy conversion and storage in CsPbBr3 faradaic photocapacitor, J. Energy Storage 116 (2025) 115982.
[31] Tesla, Tesla Solar Roof & Powerwall Installation, https://www.tesla.com/powerwall, 2025.
[32] M. Moner-Girona, M. Solano-Peralta, M. Lazopoulou, E. Ackom, X. Vallve, S. Szabó, Electrification of Sub-Saharan Africa through PV/hybrid mini-grids: Reducing the gap between current business models and on-site experience, Renew. Sustain. Energy Rev. 91 (2018) 1148-1161.
[33] J. Xu, Y. Chen, L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell, Nat. Commun. 6 (2015) 8103.
[34] T.-T. Li, Y.-B. Yang, B.-S. Zhao, Y. Wu, X.-W. Wu, P. Chen, X.-P. Gao, Photo-rechargeable all-solid-state lithium− sulfur batteries based on perovskite indoor photovoltaic modules, Chem. Eng. J. 455 (2023) 140684.
[35] C. Li, S. Cong, Z. Tian, Y. Song, L. Yu, C. Lu, Y. Shao, J. Li, G. Zou, M.H. Rümmeli, S. Dou, J. Sun, L. Zhongfan, Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors, Nano Energy 60 (2019) 247-256.
[36] P. Dong, M.-T.F. Rodrigues, J. Zhang, R.S. Borges, K. Kalaga, A.L. Reddy, G.G. Silva, P.M. Ajayan, J. Lou, A flexible solar cell/supercapacitor integrated energy device, Nano Energy 42 (2017) 181-186.
[37] R. Liu, J. Wang, T. Sun, M. Wang, C. Wu, H. Zou, T. Song, X. Zhang, S.-T. Lee, Z.L. Wang, Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%, Nano Lett. 17 (2017) 4240-4247.
[38] T.N. Murakami, N. Kawashima, T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system, Chem. Comm. (2005) 3346-3348.
[39] P.A. Mini, S.V. Nair, K.R. Subramanian, Design and development of an integrated device consisting of an independent solar cell with electrical storage capacity, Prog. Photovolt: Res. Appl. 21 (2013) 1153-1157.
[40] Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film, J. Mater. Chem. A 1 (2013) 954-958.
[41] K. Gao, D. Ti, Z. Zhang, A photocapacitor with high working voltage and energy density, Sustain. Energy Fuels. 3 (2019) 1937-1942.
[42] P. Wang, X. Chen, G. Sun, C. Wang, J. Luo, L. Yang, J. Lv, Y. Yao, W. Luo, Z. Zou, A capacitor‐type Faradaic junction for direct solar energy conversion and storage, Angew.Chem. Int. Ed. 60 (2021) 1390-1395.
[43] P. Wang, M. Xue, D. Jiang, Y. Yang, J. Zhang, H. Dong, G. Sun, Y. Yao, W. Luo, Z. Zou, Photovoltage memory effect in a portable Faradaic junction solar rechargeable device, Nat. Commun. 13 (2022) 2544.
[44] M. Chen, H. Dong, M. Xue, C. Yang, P. Wang, Y. Yang, H. Zhu, C. Wu, Y. Yao, W. Luo, Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces, Nat. Commun. 12 (2021) 6363.
[45] H. Dong, X. Pan, Y. Gong, M. Xue, P. Wang, S. Ho-Kimura, Y. Yao, H. Xin, W. Luo, Z. Zou, Potential window alignment regulating ion transfer in faradaic junctions for efficient photoelectrocatalysis, Nat. Commun. 14 (2023) 7969.
[46] X. Chen, K. Zhu, P. Wang, G. Sun, Y. Yao, W. Luo, Z. Zou, Reversible charge transfer and adjustable potential window in semiconductor/faradaic layer/liquid junctions, iScience 23 (2020)
[47] G.F. Samu, R.A. Scheidt, P.V. Kamat, C. Janáky, Electrochemistry and spectroelectrochemistry of lead halide perovskite films: materials science aspects and boundary conditions, J. Mater. Chem. 30 (2018) 561-569.
[48] L. Chen, Q. Kang, Z. Li, B. Zhang, G. Zou, D. Shen, Tunable electrochemiluminescence properties of CsPbBr3 perovskite nanocrystals using mixed-monovalent cations, New J. Chem. 44 (2020) 3323-3329.
[49] R.H. Wang, W. Wang, Y.Z. Zhang, W. Hu, L. Yue, J.H. Ni, W.Q. Zhang, G. Pei, S. Yang, L.F. Chen, Photoexcitation‐Enhanced High‐Ionic Conductivity in Polymer Electrolytes for Flexible, All‐Solid‐State Lithium‐Metal Batteries Operating at Room Temperature, Angew. Chem. 137 (2025) e202417605.
[50] H. Liu, X. Gao, Y. Lou, H.K. Liu, S.X. Dou, Z. Bai, N. Wang, Coupled Photochemical Storage Materials in Solar Rechargeable Batteries: Progress, Challenges, and Prospects, Adv. Energy Mater. 14 (2024) 2402381.
[51] H.-W. Ke, I.Y.-Y. Bu, B.-J. Chen, C.-C. Hu, Y.-S. Fu, T.-F. Guo, Fabrication of highly transparent CsPbBr3 quantum-dot thin film via bath coating for light emission applications, Ceram. Int. 48 (2022) 15729-15736.
[52] M. He, L. Zhang, J. Li, Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries, Appl. Surf. Sci. 541 (2021) 148509.
[53] P. Pal, A. Ghosh, Three-Dimensional CsPbCl3 Perovskite Anode for Quasi-Solid-State Li-Ion and Dual-Ion Batteries: Mechanism of Li+ Conversion Process in Perovskite, Phys. Rev. Appl. 14 (2020) 064010.
[54] F.J. Iftikhar, Q. Wali, S. Yang, Y. Iqbal, R. Jose, S. Munir, I.A. Gondal, M.E. Khan, Structural and optoelectronic properties of hybrid halide perovskites for solar cells, Org. Electron. 91 (2021) 106077.
[55] I.J. Ikot, H. Louis, G.J. Ogunwale, I.O. Amodu, P.B. Ashishie, E. Ekeng-ita, A.S. Adeyinka, Influence of alkaline-earth metals (B= Be, Mg, Ca) doping on the structural, electronic, optoelectronic, thermodynamic, and core-level spectroscopic studies of CsBCl3 halide perovskites, J. Mater. Sci. 58 (2023) 6656-6676.
[56] J. Lin, L. Gomez, C. De Weerd, Y. Fujiwara, T. Gregorkiewicz, K. Suenaga, Direct observation of band structure modifications in nanocrystals of CsPbBr3 perovskite, Nano Lett. 16 (2016) 7198-7202.
[57] X. He, Y. Qiu, S. Yang, Fully‐inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials, Adv. Mater. 29 (2017) 1700775.
[58] W. Zhu, C. Bao, F. Li, T. Yu, H. Gao, Y. Yi, J. Yang, G. Fu, X. Zhou, Z. Zou, A halide exchange engineering for CH3NH3PbI3−xBrx perovskite solar cells with high performance and stability, Nano Energy 19 (2016) 17-26.
[59] D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.-P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning, Nano Lett. 15 (2015) 5191-5199.
[60] H. Jiang, S. Cui, Y. Chen, H. Zhong, Ion exchange for halide perovskite: From nanocrystal to bulk materials, Nano Select 2 (2021) 2040-2060.
[61] L.K. Ono, E.J. Juarez-Perez, Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions, ACS Appl. Mater. Interfaces. 9 (2017) 30197-30246.
[62] R.P. Iczkowski, J.L. Margrave, Electronegativity, J. Am. Chem. Soc. 83 (1961) 3547-3551.
[63] H. Pritchard, H. Skinner, The concept of electronegativity, Chem. Rev. 55 (1955) 745-786.
[64] E. Chen, W. Wentworth, Negative ion states of the halides, J. Phys. Chem. C 89 (1985) 4099-4105.
[65] G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22-31.
[66] B. Himabindu, N.L. Devi, B.R. Kanth, Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review, Mater. Today: Proc. 47 (2021) 4891-4896.
[67] D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N.A. Gibson, A.B. Wong, S.W. Eaton, N. Kornienko, Q. Kong, M. Lai, Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions, J. Am. Chem. Soc. 138 (2016) 7236-7239.
[68] P. Cottingham, R.L. Brutchey, Compositionally Dependent Phase Identity of Colloidal CsPbBr3–xIx Quantum Dots, J. Mater. Chem. 28 (2016) 7574-7577.
[69] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Adv. Mater. 27 (2015) 7162-7167.
[70] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15 (2015) 3692-3696.
[71] A. Lasia, Electrochemical impedance spectroscopy and its applications, in: Modern aspects of electrochemistry, Springer, 2002, pp. 143-248.
[72] B.-Y. Chang, S.-M. Park, Electrochemical impedance spectroscopy, Annu. Rev. Anal. Chem. 3 (2010) 207-229.
[73] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochim. Acta 281 (2018) 170-188.
[74] H. Cesiulis, N. Tsyntsaru, A. Ramanavicius, G. Ragoisha, The study of thin films by electrochemical impedance spectroscopy. Springer, Cham., 2016.
[75] K. Sivula, Mott–Schottky analysis of photoelectrodes: sanity checks are needed, ACS Energy Lett. 6 (2021) 2549-2551.
[76] W.J. Albery, G.J. O'Shea, A.L. Smith, Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface, J. Chem. Soc. Faraday Trans. 92 (1996) 4083-4085.
[77] T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343 (2014) 990-994.
[78] W. Zheng, Y. Tang, Z. Liu, G. Xing, K. Zhao, Enhanced charge carrier separation by bi-piezoelectric effects based on pine needle-like BaTiO₃/ZnO continuous nanofibers, J. Mater. Chem. A (2022)
[79] N.Y. Tashkandi, S.M. Albukhari, A.A. Ismail, Mesoporous BiVO4/TiO2 heterojunction: enhanced photoabsorption and photocatalytic ability through promoted charge transfer, Environ. Sci. Pollut. Res. 29 (2022) 78472-78482.
[80] H. Zhang, F. Song, Recent advances in photo-assisted electrocatalysts for energy conversion, J. Mater. Chem. A. 9 (2021) 27193-27214.
[81] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (2016) 5925-5950.
[82] S. Chen, X. Wen, S. Huang, F. Huang, Y.B. Cheng, M. Green, A. Ho‐Baillie, Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite, Sol. 1 (2017) 1600001.
[83] F. Yi, H. Ren, K. Dai, X. Wang, Y. Han, K. Wang, K. Li, B. Guan, J. Wang, M. Tang, Solar thermal-driven capacitance enhancement of supercapacitors, Energy Environ. Sci. 11 (2018) 2016-2024.
[84] J. Zheng, T. Jow, High energy and high power density electrochemical capacitors, J. Power Sources 62 (1996) 155-159.
[85] A. Burke, M. Miller, Testing of electrochemical capacitors: Capacitance, resistance, energy density, and power capability, Electrochim. Acta. 55 (2010) 7538-7548.
[86] B. Yuan, N. Li, J. Liu, F. Xu, C. Li, F. Juan, H. Yu, C. Li, B. Cao, Improving the performances of CsPbBr3 solar cells fabricated in ambient condition, J. Mater. Sci.: Mater. Electron. 31 (2020) 21154-21167.
[87] F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology, ACS nano 9 (2015) 4533-4542.
[88] Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals, Nat. Mater. 17 (2018) 394-405.
[89] A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots, Angew. Chem. 127 (2015) 15644-15648.
[90] S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M.V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6 (2015) 8056.
[91] Y. Su, X. Chen, W. Ji, Q. Zeng, Z. Ren, Z. Su, L. Liu, Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X= Cl, Br, I) perovskite QDs toward the tunability of entire visible light, ACS Appl. Mater. Interfaces 9 (2017) 33020-33028.
[92] H.M. Ghaithan, Z.A. Alahmed, S.M. Qaid, M. Hezam, A.S. Aldwayyan, Density functional study of cubic, tetragonal, and orthorhombic CsPbBr3 perovskite, J ACS omega 5 (2020) 7468-7480.
[93] T.G. Liashenko, E.D. Cherotchenko, A.P. Pushkarev, V. Pakštas, A. Naujokaitis, S.A. Khubezhov, R.G. Polozkov, K.B. Agapev, A.A. Zakhidov, I.A. Shelykh, Electronic structure of CsPbBr3− xClx perovskites: synthesis, experimental characterization, and DFT simulations, Phys. Chem. Chem. Phys. 21 (2019) 18930-18938.
[94] K. Burke, L.O. Wagner, DFT in a nutshell, Int. J. Quantum Chem. 113 (2013) 96-101.
[95] D. Bagayoko, Understanding density functional theory (DFT) and completing it in practice, AIP Adv. 4 (2014)
[96] J. Duan, Y. Zhao, B. He, Q. Tang, Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber, Small 14 (2018) 1704443.
[97] M. Mehrabian, S. Dalir, G. Mahmoudi, B. Miroslaw, M.G. Babashkina, A.V. Dektereva, D.A. Safin, A highly stable all‐inorganic CsPbBr3 perovskite solar cell, Eur. J. Inorg. Chem. 2019 (2019) 3699-3703.
[98] C. Kittel, P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018.
[99] P.W. Atkins, J. De Paula, J. Keeler, Atkins' physical chemistry. Oxford university press, 2023.
[100] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
[101] P. Perrot, A to Z of Thermodynamics. Oxford University Press, USA, 1998.
[102] P. Atkins, L. Jones, Chemical principles: The quest for insight. Macmillan, 2007.