簡易檢索 / 詳目顯示

研究生: 陳韋元
Chen, Wei-Yuan
論文名稱: 應用弧長法與移動最小二乘法於圓柱體薄殼大變形分析
Large deformation analysis of the cylindrical shells by the arc-length and moving least squares methods
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 弧長法移動最小二乘法薄殼大變形
外文關鍵詞: arc-length method, moving least squares method, shell large deformation
相關次數: 點閱:140下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為薄殼大變形理論分析,以一階剪切變形為假設,由虛功原理推得本構方程式、平衡方程式及其邊界條件,並且採用移動最小二乘法配合擬赫米特型式加以線性求解。而非線性求解則使用牛頓疊代法搭配弧長控制,直至收斂值逼近收斂指標。其中為避免出現複數的可能,採用鬆弛因子修正非齊性位移增量。
    本文之數值算例為分析圓柱薄殼及開放圓柱薄殼於不同邊界條件下,而外力型式為側向加載、軸壓、集中彎矩、剪力及扭矩等等,並與理論解比較增加可信度。目的為追蹤後挫屈及位移突跳路徑,並比較不同幾何條件下其工程性質,如臨界強度、勁度、撓度等等。

    This study describes the large deformation analysis of the shell in the first-order shear deformation theory. The principle of virtual work is need to derive constitutive equations, equations of equilibrium and boundary conditions, and the moving least squares method mixed with the quasi-Hermite type formulation is also adopted to solve the linear problem. However, nonlinear equations are linearized with the Newton iteration method based on the arc-length controlling until the convergence value less than its requirement. In order to avoid complex roots, the relaxation factor is included to improve a homogeneous deformation increment.
    The numerical examples of the article are to analyze cylindrical shells and partial ones with different boundary conditions and from multiple loading types, such as lateral loading, axial compression, bending moment, shear force and torsion. This thesis also compared the numerical result with the theoretical solution in a good agreement. The purpose of this study is to trace the post-buckling and snapping through effects, and investigate their mechanical behaviors, such as the critical strength, stiffness and deflection in different geometries.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文架構 4 第二章 薄殼大變形理論 5 2.1 變形前中曲面之描述 5 2.2 變形後中曲面之描述 7 2.3 大變形應變分析 9 2.4 平衡方程式及邊界條件 13 2.5 本構方程式 18 第三章 弧長法 20 3.1 Newton-Raphson疊代法 20 3.2 弧長法搭配Newton-Raphson疊代 20 3.3 改善弧長法 23 第四章 移動最小二乘法 25 4.1 函數近似的移動最小二乘法 25 4.2 基底函數之建立 26 4.3 權函數之建立 26 4.4 擬Hermite型式 27 第五章 數值算例 29 5.1 圓柱薄殼受側向加載 30 5.1.1 弧長法之應用及因子選擇 30 5.1.2 邊界變化之圓柱薄殼受側壓及側向張力 31 5.1.3 幾何變化之圓柱薄殼受側壓 32 5.1.4 受側壓之後挫屈行為 33 5.2 圓柱薄殼受軸向加載 34 5.2.1 幾何變化之圓柱薄殼受軸壓 34 5.2.2 受軸壓之後挫屈行為 35 5.3 開放圓柱薄殼 36 5.3.1 幾何變化之開放圓柱薄殼受均佈載重 36 5.3.2 高拱度之開放圓柱薄殼受均佈載重 37 5.3.3 開放圓柱薄殼受集中彎矩 38 5.4 薄殼受扭剪行為 39 5.4.1 圓柱薄殼受扭矩 39 5.4.2 開放圓柱薄殼受剪力 40 第六章 結論 41 參考文獻 44 表 47 圖 52

    [1] Fauvel, J. "Algorithms in the Pre-Calculus Classroom: Who Was Newton-Raphson?" Mathematics in School 27.4 (1998): 45-47.
    [2] Davidon, W.C. "Variable metric method for minimization." Technical report, Argonne National Laboratories, Ill., 1959.
    [3] Broyden, C.G. "Quasi-Newton methods and their application to function minimisation." Mathematics of Computation 21.99 (1967): 368-381.
    [4] Fletcher, R. "A new approach to variable metric algorithms." The Computer Journal, 13(3):317, 1970.
    [5] Goldfarb, Donald. "A family of variable-metric methods derived by variational means." Mathematics of computation 24.109 (1970): 23-26.
    [6] Shanno, David F. "Conditioning of quasi-Newton methods for function minimization." Mathematics of computation 24.111 (1970): 647-656.
    [7] Sabir, A. B., and A. C. Lock. "The applications of finite elements to large deflection geometrically nonlinear behaviour of cylindrical shells." (1972).
    [8] Wempner, Gerald A. "Discrete approximations related to nonlinear theories of solids." International Journal of Solids and Structures 7.11 (1971): 1581-1599.
    [9] Riks, Eduard. "The application of Newton’s method to the problem of elastic stability." Journal of Applied Mechanics 39.4 (1972): 1060-1065.
    [10] Riks, E. "An incremental approach to the solution of snapping and buckling problems." International Journal of Solids and Structures 15.7 (1979): 529-551.
    [11] Ramm, E. "Strategies for Tracing Nonlinear Response Near Limit Points. Nonlinear Finite Element Analysis Structural Mechanics: Proceedings of the Europe–US Workshop, 1980." 63-89.
    [12] Crisfield, M.A. "A fast incremental/iterative solution procedure that handles “snap-through”." Computers & Structures 13.1 (1981): 55-62.
    [13] Bellini, P. X., and A. Chulya. "An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations." Computers & Structures 26.1 (1987): 99-110.
    [14] Lam, W. F., and C. T. Morley. "Arc-length method for passing limit points in structural calculation." Journal of structural engineering 118.1 (1992): 169-185.
    [15] Zhou, Zhilong, and D. W. Murray. "An incremental solution technique for unstable equilibrium paths of shell structures." Computers & structures 55.5 (1995): 749-759.
    [16] Teng, J. G., and Y. F. Lou. "Post‐collapse bifurcation analysis of shells of revolution by the accumulated arc-length method. "International journal for numerical methods in engineering 40.13 (1997): 2369-2383.
    [17] 李元齊和沈祖炎,"弧長控制類方法使用中若干問題的探討與改進 Ξ." 計算力學學報 15 (1998): 4.
    [18] Lucy, Leon B. "A numerical approach to the testing of the fission hypothesis." The astronomical journal 82 (1977): 1013-1024.
    [19] Nayroles, B., G. Touzot, and P. Villon. "Generalizing the finite element method: diffuse approximation and diffuse elements." Computational mechanics 10.5 (1992): 307-318.
    [20] Belytschko, Ted, Lei Gu, and Y. Y. Lu. "Fracture and crack growth by element free Galerkin methods." Modelling and Simulation in Materials Science and Engineering 2.3A (1994): 519.
    [21] Liu, Wing Kam, Sukky Jun, and Yi Fei Zhang. "Reproducing kernel particle methods." International journal for numerical methods in fluids 20.8‐9 (1995): 1081-1106.
    [22] Onate, E., et al. "A stabilized finite point method for analysis of fluid mechanics problems." Computer Methods in Applied Mechanics and Engineering 139.1 (1996): 315-346.
    [23] Krongauz, Y., and T. Belytschko. "A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG." Computational Mechanics 19.4 (1997): 327-333.
    [24] Zhu, Tulong, J-D. Zhang, and S. N. Atluri. "A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach." Computational mechanics 21.3 (1998): 223-235.
    [25] Atluri, S. N., and T-L. Zhu. "The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics." Computational Mechanics25.2-3 (2000): 169-179.
    [26] Zhang, Xiong, et al. "Least‐squares collocation meshless method."International Journal for Numerical Methods in Engineering 51.9 (2001): 1089-1100.
    [27] Long, Shuyao, and S. N. Atluri. "A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate." Computer Modeling in Engineering and Sciences 3.1 (2002): 53-64.
    [28] Wang, Dongdong, and Jiun-Shyan Chen. "Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation." Computer Methods in Applied Mechanics and Engineering 193.12 (2004): 1065-1083.
    [29] Wang, Yung-Ming, Syuan-Mu Chen, and Chih-Ping Wu. "A meshless collocation method based on the differential reproducing kernel interpolation."Computational mechanics 45.6 (2010): 585-606.
    [30] 張祐綱,"Hermite type 之移動最小二乘法在板、梁分析上之應用." 成功大學土木工程學系學位論文(2014)
    [31] 林均威,"受束制之移動最小二乘法在古典板上之應用". 2013.成功大學土木工程學系學位論文(2013)
    [32] 張延宗,"基於狀態變數與Hermite型近似之移動最小二乘法在古典板之應用." 成功大學土木工程學系學位論文(2014)
    [33] 吳梓瑋,"應用移動最小二乘法於圓柱體薄殼大變形分析." 成功大學土木工程學系學位論文(2015)
    [34] Iturgaiz Elso, Myriam. "Finite Element Method studies on the stability behavior of cylindrical shells under axial and radial uniform and non-uniform loads." (2012).

    下載圖示 校內:2021-08-09公開
    校外:2021-08-09公開
    QR CODE